import gradio as gr import re import torch from PIL import Image from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor model_id = "adept/fuyu-8b" dtype = torch.bfloat16 device = "cuda" tokenizer = AutoTokenizer.from_pretrained(model_id) model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype) processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer) CAPTION_PROMPT = "Generate a coco-style caption.\n" DETAILED_CAPTION_PROMPT = "What is happening in this image?" def resize_to_max(image, max_width=1920, max_height=1080): width, height = image.size if width <= max_width and height <= max_height: return image scale = min(max_width/width, max_height/height) width = int(width*scale) height = int(height*scale) return image.resize((width, height), Image.LANCZOS) def pad_to_size(image, canvas_width=1920, canvas_height=1080): width, height = image.size if width >= canvas_width and height >= canvas_height: return image # Paste at (0, 0) canvas = Image.new("RGB", (canvas_width, canvas_height)) canvas.paste(image) return canvas def predict(image, prompt): # image = image.convert('RGB') model_inputs = processor(text=prompt, images=[image]) model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} generation_output = model.generate(**model_inputs, max_new_tokens=50) prompt_len = model_inputs["input_ids"].shape[-1] return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) def caption(image, detailed_captioning): if detailed_captioning: caption_prompt = DETAILED_CAPTION_PROMPT else: caption_prompt = CAPTION_PROMPT return predict(image, caption_prompt).lstrip() def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def scale_factor_to_fit(original_size, target_size=(1920, 1080)): width, height = original_size max_width, max_height = target_size if width <= max_width and height <= max_height: return 1.0 return min(max_width/width, max_height/height) def tokens_to_box(tokens, original_size): bbox_start = tokenizer.convert_tokens_to_ids("<0x00>") bbox_end = tokenizer.convert_tokens_to_ids("<0x01>") try: # Assumes a single box bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item() bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item() if bbox_end_pos != bbox_start_pos + 5: return tokens # Retrieve transformed coordinates from tokens coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos]) # Scale back to original image size and multiply by 2 scale = scale_factor_to_fit(original_size) top, left, bottom, right = [2 * int(float(c)/scale) for c in coords] # Replace the IDs so they get detokenized right replacement = f" <box>{top}, {left}, {bottom}, {right}</box>" replacement = tokenizer.tokenize(replacement)[1:] replacement = tokenizer.convert_tokens_to_ids(replacement) replacement = torch.tensor(replacement).to(tokens) tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0) return tokens except: gr.Error("Can't convert tokens.") return tokens def coords_from_response(response): # y1, x1, y2, x2 pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>" match = re.search(pattern, response) if match: # Unpack and change order y1, x1, y2, x2 = [int(coord) for coord in match.groups()] return (x1, y1, x2, y2) else: gr.Error("The string is malformed or does not match the expected pattern.") def localize(image, query): prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}" # Downscale and/or pad to 1920x1080 padded = resize_to_max(image) padded = pad_to_size(padded) model_inputs = processor(text=prompt, images=[padded]) model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} generation_output = model.generate(**model_inputs, max_new_tokens=40) prompt_len = model_inputs["input_ids"].shape[-1] tokens = generation_output[0][prompt_len:] tokens = tokens_to_box(tokens, image.size) decoded = tokenizer.decode(tokens, skip_special_tokens=True) coords = coords_from_response(decoded) return image, [(coords, f"Location of \"{query}\"")] css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML( """ <h1 id="title">Fuyu Multimodal Demo</h1> <h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3> For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :) Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>. <br> <br> <strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong> <h3>Play with Fuyu-8B in this demo! 💬</h3> """ ) with gr.Tab("Visual Question Answering"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload your Image", type="pil") text_input = gr.Textbox(label="Ask a Question") vqa_output = gr.Textbox(label="Output") vqa_btn = gr.Button("Answer Visual Question") gr.Examples( [["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"], ["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]], inputs = [image_input, text_input], outputs = [vqa_output], fn=predict, cache_examples=True, label='Click on any Examples below to get VQA results quickly 👇' ) with gr.Tab("Image Captioning"): with gr.Row(): with gr.Column(): captioning_input = gr.Image(label="Upload your Image", type="pil") detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning") captioning_output = gr.Textbox(label="Output") captioning_btn = gr.Button("Generate Caption") gr.Examples( [["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]], inputs = [captioning_input, detailed_captioning_checkbox], outputs = [captioning_output], fn=caption, cache_examples=True, label='Click on any Examples below to get captioning results quickly 👇' ) captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output) vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output) with gr.Tab("Find Text in Screenshots"): with gr.Row(): with gr.Column(): localization_input = gr.Image(label="Upload your Image", type="pil") query_input = gr.Textbox(label="Text to find") localization_btn = gr.Button("Locate Text") with gr.Column(): with gr.Row(height=800): localization_output = gr.AnnotatedImage(label="Text Position") gr.Examples( [["assets/localization_example_1.jpeg", "Share your repair"], ["assets/screen2words_ui_example.png", "statistics"]], inputs = [localization_input, query_input], outputs = [localization_output], fn=localize, cache_examples=True, label='Click on any Examples below to get localization results quickly 👇' ) localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output) demo.launch(share = True)