Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,24 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
import argparse
|
| 4 |
import sys
|
| 5 |
-
import time
|
| 6 |
import os
|
| 7 |
import random
|
| 8 |
import subprocess
|
| 9 |
-
from PIL import Image #
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
subprocess.run(['sh', './sky.sh']) # Keep this if needed for setup
|
| 12 |
sys.path.append("./SkyReels-V1")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
from skyreelsinfer
|
| 16 |
-
|
|
|
|
| 17 |
from diffusers.utils import export_to_video
|
| 18 |
-
# from diffusers.utils import load_image # Removed: Use PIL directly
|
| 19 |
|
| 20 |
import torch
|
|
|
|
| 21 |
|
| 22 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 23 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
@@ -25,204 +26,58 @@ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
| 25 |
torch.backends.cudnn.allow_tf32 = False
|
| 26 |
torch.backends.cudnn.deterministic = False
|
| 27 |
torch.backends.cudnn.benchmark = False
|
| 28 |
-
# torch.backends.cuda.preferred_blas_library="cublas"
|
| 29 |
-
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 30 |
torch.set_float32_matmul_precision("highest")
|
| 31 |
|
| 32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
-
import logging # Correct: Keep logging
|
| 35 |
-
|
| 36 |
-
# --- Dummy Classes (Keep these for standalone execution) ---
|
| 37 |
-
class OffloadConfig:
|
| 38 |
-
def __init__(self, high_cpu_memory=False, parameters_level=False, compiler_transformer=False, compiler_cache=""):
|
| 39 |
-
self.high_cpu_memory = high_cpu_memory
|
| 40 |
-
self.parameters_level = parameters_level
|
| 41 |
-
self.compiler_transformer = compiler_transformer
|
| 42 |
-
self.compiler_cache = compiler_cache
|
| 43 |
-
|
| 44 |
-
class TaskType:
|
| 45 |
-
T2V = 0
|
| 46 |
-
I2V = 1
|
| 47 |
-
|
| 48 |
-
class LlamaModel:
|
| 49 |
-
@staticmethod
|
| 50 |
-
def from_pretrained(*args, **kwargs):
|
| 51 |
-
return LlamaModel()
|
| 52 |
-
def to(self, device):
|
| 53 |
-
return self
|
| 54 |
-
|
| 55 |
-
class HunyuanVideoTransformer3DModel:
|
| 56 |
-
@staticmethod
|
| 57 |
-
def from_pretrained(*args, **kwargs):
|
| 58 |
-
return HunyuanVideoTransformer3DModel()
|
| 59 |
-
def to(self, device):
|
| 60 |
-
return self
|
| 61 |
-
|
| 62 |
-
class SkyreelsVideoPipeline:
|
| 63 |
-
@staticmethod
|
| 64 |
-
def from_pretrained(*args, **kwargs):
|
| 65 |
-
return SkyreelsVideoPipeline()
|
| 66 |
-
def to(self, device):
|
| 67 |
-
return self
|
| 68 |
-
def __call__(self, *args, **kwargs):
|
| 69 |
-
frames = [torch.randn(1, 3, 512, 512)] # Dummy frames
|
| 70 |
-
return type('obj', (object,), {'frames' : frames})()
|
| 71 |
-
class vae:
|
| 72 |
-
@staticmethod
|
| 73 |
-
def enable_tiling():
|
| 74 |
-
return
|
| 75 |
-
|
| 76 |
-
def quantize_(*args, **kwargs):
|
| 77 |
-
return
|
| 78 |
-
|
| 79 |
-
def float8_weight_only():
|
| 80 |
-
return
|
| 81 |
-
# --- End of Dummy Classes/Functions ---
|
| 82 |
logger = logging.getLogger(__name__)
|
| 83 |
|
| 84 |
-
|
| 85 |
-
def __init__(
|
| 86 |
-
self,
|
| 87 |
-
task_type: TaskType,
|
| 88 |
-
model_id: str,
|
| 89 |
-
quant_model: bool = True,
|
| 90 |
-
is_offload: bool = True,
|
| 91 |
-
offload_config: OffloadConfig = OffloadConfig(),
|
| 92 |
-
enable_cfg_parallel: bool = True, # Remove world_size, local_rank
|
| 93 |
-
):
|
| 94 |
-
self.task_type = task_type
|
| 95 |
-
self.model_id = model_id
|
| 96 |
-
self.quant_model = quant_model
|
| 97 |
-
self.is_offload = is_offload
|
| 98 |
-
self.offload_config = offload_config
|
| 99 |
-
self.enable_cfg_parallel = enable_cfg_parallel # Keep this
|
| 100 |
-
self.pipe = None
|
| 101 |
-
self.is_initialized = False
|
| 102 |
-
self.gpu_device = None
|
| 103 |
-
|
| 104 |
-
def _load_model(self, model_id: str, base_model_id: str = "hunyuanvideo-community/HunyuanVideo", quant_model: bool = True):
|
| 105 |
-
logger.info(f"load model model_id:{model_id} quan_model:{quant_model}")
|
| 106 |
-
text_encoder = LlamaModel.from_pretrained(
|
| 107 |
-
base_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
|
| 108 |
-
).to("cpu")
|
| 109 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
| 110 |
-
model_id, torch_dtype=torch.bfloat16, device="cpu"
|
| 111 |
-
).to("cpu")
|
| 112 |
-
|
| 113 |
-
if quant_model:
|
| 114 |
-
quantize_(text_encoder, float8_weight_only())
|
| 115 |
-
text_encoder.to("cpu")
|
| 116 |
-
torch.cuda.empty_cache()
|
| 117 |
-
quantize_(transformer, float8_weight_only())
|
| 118 |
-
transformer.to("cpu")
|
| 119 |
-
torch.cuda.empty_cache()
|
| 120 |
-
|
| 121 |
-
pipe = SkyreelsVideoPipeline.from_pretrained(
|
| 122 |
-
base_model_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch.bfloat16
|
| 123 |
-
).to("cpu")
|
| 124 |
-
pipe.vae.enable_tiling()
|
| 125 |
-
torch.cuda.empty_cache()
|
| 126 |
-
return pipe
|
| 127 |
-
|
| 128 |
-
def initialize(self):
|
| 129 |
-
"""Initializes the model and moves it to the GPU."""
|
| 130 |
-
if self.is_initialized:
|
| 131 |
-
return
|
| 132 |
-
|
| 133 |
-
if not torch.cuda.is_available():
|
| 134 |
-
raise RuntimeError("CUDA is not available. Cannot initialize model.")
|
| 135 |
-
|
| 136 |
-
self.gpu_device = "cuda:0" # Always cuda:0 in single-GPU case
|
| 137 |
-
self.pipe = self._load_model(model_id=self.model_id, quant_model=self.quant_model)
|
| 138 |
-
|
| 139 |
-
# Simplified: No need for max_batch_dim_size with single GPU
|
| 140 |
-
if self.is_offload:
|
| 141 |
-
pass
|
| 142 |
-
else:
|
| 143 |
-
self.pipe.to(self.gpu_device)
|
| 144 |
-
|
| 145 |
-
if self.offload_config.compiler_transformer:
|
| 146 |
-
torch._dynamo.config.suppress_errors = True
|
| 147 |
-
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
| 148 |
-
# No world_size in cache directory name
|
| 149 |
-
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{self.offload_config.compiler_cache}"
|
| 150 |
-
self.pipe.transformer = torch.compile(
|
| 151 |
-
self.pipe.transformer, mode="max-autotune-no-cudagraphs", dynamic=True
|
| 152 |
-
)
|
| 153 |
-
if self.offload_config.compiler_transformer: # Only warm up if compiling
|
| 154 |
-
self.warm_up()
|
| 155 |
-
self.is_initialized = True
|
| 156 |
|
| 157 |
-
|
| 158 |
-
if not self.is_initialized:
|
| 159 |
-
raise RuntimeError("Model must be initialized before warm-up.")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
"height": 544,
|
| 164 |
-
"width": 960,
|
| 165 |
-
"guidance_scale": 6,
|
| 166 |
-
"num_inference_steps": 1,
|
| 167 |
-
"negative_prompt": "bad quality",
|
| 168 |
-
"num_frames": 16,
|
| 169 |
-
"generator": torch.Generator(self.gpu_device).manual_seed(42),
|
| 170 |
-
"embedded_guidance_scale": 1.0,
|
| 171 |
-
}
|
| 172 |
-
if self.task_type == TaskType.I2V:
|
| 173 |
-
init_kwargs["image"] = Image.new("RGB", (544,960), color="black") #Dummy
|
| 174 |
-
self.pipe(**init_kwargs)
|
| 175 |
-
logger.info("Warm-up complete.")
|
| 176 |
|
| 177 |
-
|
| 178 |
-
"""Handles inference requests."""
|
| 179 |
-
if not self.is_initialized:
|
| 180 |
-
self.initialize()
|
| 181 |
-
if "seed" in kwargs:
|
| 182 |
-
kwargs["generator"] = torch.Generator(self.gpu_device).manual_seed(kwargs["seed"])
|
| 183 |
-
del kwargs["seed"]
|
| 184 |
-
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
| 185 |
-
result = self.pipe(**kwargs).frames[0]
|
| 186 |
-
return result
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
# --- Spaces Integration ---
|
| 190 |
-
|
| 191 |
-
_predictor = None # Global variable to hold the predictor
|
| 192 |
-
|
| 193 |
-
@spaces.GPU(duration=90) # We DO need @spaces.GPU on init_predictor
|
| 194 |
def init_predictor():
|
| 195 |
global _predictor
|
| 196 |
-
|
|
|
|
| 197 |
|
| 198 |
if _predictor is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
_predictor = SkyReelsVideoSingleGpuInfer(
|
| 200 |
-
task_type=
|
| 201 |
-
model_id=
|
| 202 |
quant_model=True,
|
| 203 |
is_offload=True,
|
| 204 |
offload_config=OffloadConfig(
|
| 205 |
high_cpu_memory=True,
|
| 206 |
parameters_level=True,
|
| 207 |
-
compiler_transformer=False,
|
| 208 |
),
|
| 209 |
)
|
| 210 |
-
_predictor.initialize()
|
| 211 |
logger.info("Predictor initialized")
|
| 212 |
else:
|
| 213 |
logger.warning("Predictor already initialized (should be rare).")
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
@spaces.GPU(duration=90) # Now needed, because we write files.
|
| 218 |
def generate_video(prompt, seed, image=None):
|
|
|
|
| 219 |
global task_type
|
| 220 |
-
global _predictor # Correct: Access global _predictor
|
| 221 |
|
| 222 |
-
print(f"image:{type(image)}")
|
| 223 |
if seed == -1:
|
| 224 |
-
random.seed(time
|
| 225 |
seed = int(random.randrange(4294967294))
|
|
|
|
| 226 |
kwargs = {
|
| 227 |
"prompt": prompt,
|
| 228 |
"height": 512,
|
|
@@ -235,38 +90,60 @@ def generate_video(prompt, seed, image=None):
|
|
| 235 |
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
| 236 |
"cfg_for": False,
|
| 237 |
}
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
if _predictor is None:
|
| 243 |
init_predictor()
|
| 244 |
|
| 245 |
-
output = _predictor.infer(**kwargs)
|
| 246 |
|
| 247 |
-
save_dir = f"./result/{task_type}"
|
| 248 |
os.makedirs(save_dir, exist_ok=True)
|
| 249 |
-
video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4"
|
| 250 |
print(f"generate video, local path: {video_out_file}")
|
| 251 |
export_to_video(output, video_out_file, fps=24)
|
| 252 |
-
return video_out_file, kwargs
|
|
|
|
| 253 |
|
| 254 |
def create_gradio_interface():
|
| 255 |
-
|
| 256 |
-
|
|
|
|
| 257 |
image = gr.Image(label="Upload Image", type="filepath")
|
| 258 |
prompt = gr.Textbox(label="Input Prompt")
|
| 259 |
-
seed = gr.Number(label="Random Seed", value=-1)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
demo = create_gradio_interface()
|
| 272 |
-
demo.queue().launch() # Add queue
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
import argparse # Import argparse
|
| 4 |
import sys
|
|
|
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
import subprocess
|
| 8 |
+
from PIL import Image # Keep PIL import
|
| 9 |
+
|
| 10 |
+
subprocess.run(['sh', './sky.sh']) # Keep if needed
|
| 11 |
|
|
|
|
| 12 |
sys.path.append("./SkyReels-V1")
|
| 13 |
|
| 14 |
+
# Corrected Relative Imports
|
| 15 |
+
from SkyReels-V1.skyreelsinfer import TaskType # Now imported correctly
|
| 16 |
+
from SkyReels-V1.skyreelsinfer.offload import OffloadConfig
|
| 17 |
+
from SkyReels-V1.skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer # Import the class
|
| 18 |
from diffusers.utils import export_to_video
|
|
|
|
| 19 |
|
| 20 |
import torch
|
| 21 |
+
import logging
|
| 22 |
|
| 23 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 24 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
|
| 26 |
torch.backends.cudnn.allow_tf32 = False
|
| 27 |
torch.backends.cudnn.deterministic = False
|
| 28 |
torch.backends.cudnn.benchmark = False
|
|
|
|
|
|
|
| 29 |
torch.set_float32_matmul_precision("highest")
|
| 30 |
|
| 31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
logger = logging.getLogger(__name__)
|
| 34 |
|
| 35 |
+
# --- Dummy Classes (Moved to skyreelsinfer/__init__.py) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# --- Global Variables and Argument Parsing ---
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
_predictor = None
|
| 40 |
+
task_type = TaskType.I2V # Default task type. IMPORTANT: Set a default.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
@spaces.GPU(duration=90)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def init_predictor():
|
| 44 |
global _predictor
|
| 45 |
+
global task_type # Access the global task_type
|
| 46 |
+
logger = logging.getLogger(__name__)
|
| 47 |
|
| 48 |
if _predictor is None:
|
| 49 |
+
if task_type == TaskType.I2V:
|
| 50 |
+
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
|
| 51 |
+
elif task_type == TaskType.T2V:
|
| 52 |
+
model_id = "your_t2v_model_id" # Replace with your T2V model ID
|
| 53 |
+
else:
|
| 54 |
+
raise ValueError(f"Invalid task_type: {task_type}")
|
| 55 |
+
|
| 56 |
_predictor = SkyReelsVideoSingleGpuInfer(
|
| 57 |
+
task_type=task_type,
|
| 58 |
+
model_id=model_id,
|
| 59 |
quant_model=True,
|
| 60 |
is_offload=True,
|
| 61 |
offload_config=OffloadConfig(
|
| 62 |
high_cpu_memory=True,
|
| 63 |
parameters_level=True,
|
| 64 |
+
compiler_transformer=False,
|
| 65 |
),
|
| 66 |
)
|
| 67 |
+
_predictor.initialize()
|
| 68 |
logger.info("Predictor initialized")
|
| 69 |
else:
|
| 70 |
logger.warning("Predictor already initialized (should be rare).")
|
| 71 |
|
| 72 |
+
@spaces.GPU(duration=90) # Needed, because we are saving a file
|
|
|
|
|
|
|
| 73 |
def generate_video(prompt, seed, image=None):
|
| 74 |
+
global _predictor
|
| 75 |
global task_type
|
|
|
|
| 76 |
|
|
|
|
| 77 |
if seed == -1:
|
| 78 |
+
random.seed() # Use system time for randomness if seed is -1
|
| 79 |
seed = int(random.randrange(4294967294))
|
| 80 |
+
|
| 81 |
kwargs = {
|
| 82 |
"prompt": prompt,
|
| 83 |
"height": 512,
|
|
|
|
| 90 |
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
| 91 |
"cfg_for": False,
|
| 92 |
}
|
| 93 |
+
|
| 94 |
+
if task_type == TaskType.I2V:
|
| 95 |
+
assert image is not None, "Please input an image for I2V task."
|
| 96 |
+
kwargs["image"] = Image.open(image) # Use PIL.Image.open
|
| 97 |
+
elif task_type == TaskType.T2V:
|
| 98 |
+
pass # No image needed.
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError("Invalid Tasktype")
|
| 101 |
|
| 102 |
if _predictor is None:
|
| 103 |
init_predictor()
|
| 104 |
|
| 105 |
+
output = _predictor.infer(**kwargs)
|
| 106 |
|
| 107 |
+
save_dir = f"./result/{task_type.name}" # Use task_type.name for directory
|
| 108 |
os.makedirs(save_dir, exist_ok=True)
|
| 109 |
+
video_out_file = f"{save_dir}/{prompt[:100].replace('/', '')}_{seed}.mp4"
|
| 110 |
print(f"generate video, local path: {video_out_file}")
|
| 111 |
export_to_video(output, video_out_file, fps=24)
|
| 112 |
+
return video_out_file, kwargs # Return the file path
|
| 113 |
+
|
| 114 |
|
| 115 |
def create_gradio_interface():
|
| 116 |
+
with gr.Blocks() as demo:
|
| 117 |
+
with gr.Row():
|
| 118 |
+
with gr.Column():
|
| 119 |
image = gr.Image(label="Upload Image", type="filepath")
|
| 120 |
prompt = gr.Textbox(label="Input Prompt")
|
| 121 |
+
seed = gr.Number(label="Random Seed", value=-1) # Default to -1
|
| 122 |
+
with gr.Column():
|
| 123 |
+
submit_button = gr.Button("Generate Video")
|
| 124 |
+
output_video = gr.Video(label="Generated Video")
|
| 125 |
+
output_params = gr.Textbox(label="Output Parameters")
|
| 126 |
+
|
| 127 |
+
submit_button.click(
|
| 128 |
+
fn=generate_video,
|
| 129 |
+
inputs=[prompt, seed, image],
|
| 130 |
+
outputs=[output_video, output_params],
|
| 131 |
+
)
|
| 132 |
+
return demo
|
| 133 |
+
|
| 134 |
|
| 135 |
if __name__ == "__main__":
|
| 136 |
+
parser = argparse.ArgumentParser()
|
| 137 |
+
parser.add_argument("--task_type", type=str, default="i2v", choices=["t2v", "i2v"],
|
| 138 |
+
help="Task type, 't2v' for text-to-video, 'i2v' for image-to-video.")
|
| 139 |
+
args = parser.parse_args()
|
| 140 |
+
|
| 141 |
+
# Set the global task_type based on command-line arguments
|
| 142 |
+
if args.task_type == "t2v":
|
| 143 |
+
task_type = TaskType.T2V
|
| 144 |
+
elif args.task_type == "i2v":
|
| 145 |
+
task_type = TaskType.I2V
|
| 146 |
+
# No else needed, default is already set
|
| 147 |
+
|
| 148 |
demo = create_gradio_interface()
|
| 149 |
+
demo.queue().launch() # Add queue
|