Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ from diffusers import HunyuanVideoTransformer3DModel
|
|
| 15 |
from diffusers.utils import export_to_video
|
| 16 |
from diffusers.utils import load_image
|
| 17 |
from PIL import Image
|
| 18 |
-
|
| 19 |
from torchao.quantization import float8_weight_only
|
| 20 |
from torchao.quantization import quantize_
|
| 21 |
from transformers import LlamaModel
|
|
@@ -80,13 +80,14 @@ negative_prompt = "Aerial view, aerial view, overexposed, low quality, deformati
|
|
| 80 |
|
| 81 |
@spaces.GPU(duration=60)
|
| 82 |
def generate(segment, image, prompt, size, guidance_scale, num_inference_steps, frames, seed, progress=gr.Progress(track_tqdm=True) ):
|
| 83 |
-
|
| 84 |
-
pipeline=pipe,
|
| 85 |
-
config=offload_config,
|
| 86 |
-
)
|
| 87 |
random.seed(time.time())
|
| 88 |
seed = int(random.randrange(4294967294))
|
| 89 |
if segment==1:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_attention_mask, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
|
| 91 |
prompt=prompt, do_classifier_free_guidance=True, negative_prompt=negative_prompt, device=device
|
| 92 |
)
|
|
|
|
| 15 |
from diffusers.utils import export_to_video
|
| 16 |
from diffusers.utils import load_image
|
| 17 |
from PIL import Image
|
| 18 |
+
import numpy as np
|
| 19 |
from torchao.quantization import float8_weight_only
|
| 20 |
from torchao.quantization import quantize_
|
| 21 |
from transformers import LlamaModel
|
|
|
|
| 80 |
|
| 81 |
@spaces.GPU(duration=60)
|
| 82 |
def generate(segment, image, prompt, size, guidance_scale, num_inference_steps, frames, seed, progress=gr.Progress(track_tqdm=True) ):
|
| 83 |
+
|
|
|
|
|
|
|
|
|
|
| 84 |
random.seed(time.time())
|
| 85 |
seed = int(random.randrange(4294967294))
|
| 86 |
if segment==1:
|
| 87 |
+
Offload.offload(
|
| 88 |
+
pipeline=pipe,
|
| 89 |
+
config=offload_config,
|
| 90 |
+
)
|
| 91 |
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_attention_mask, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
|
| 92 |
prompt=prompt, do_classifier_free_guidance=True, negative_prompt=negative_prompt, device=device
|
| 93 |
)
|