Spaces:
Paused
Paused
| import spaces | |
| import gradio as gr | |
| import argparse | |
| import sys | |
| import time | |
| import os | |
| import random | |
| from skyreelsinfer.offload import OffloadConfig | |
| from skyreelsinfer import TaskType | |
| from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer | |
| from diffusers.utils import export_to_video | |
| from diffusers.utils import load_image | |
| #predictor = None | |
| #task_type = None | |
| #def init_predictor(): | |
| # global predictor | |
| predictor = SkyReelsVideoSingleGpuInfer( | |
| task_type= TaskType.I2V, | |
| model_id="Skywork/SkyReels-V1-Hunyuan-I2V", | |
| quant_model=True, | |
| is_offload=True, | |
| offload_config=OffloadConfig( | |
| high_cpu_memory=True, | |
| parameters_level=True, | |
| compiler_transformer=False, | |
| ) | |
| ) | |
| def generate_video(prompt, seed, image=None): | |
| print(f"image:{type(image)}") | |
| if seed == -1: | |
| random.seed(time.time()) | |
| seed = int(random.randrange(4294967294)) | |
| kwargs = { | |
| "prompt": prompt, | |
| "height": 512, | |
| "width": 512, | |
| "num_frames": 97, | |
| "num_inference_steps": 30, | |
| "seed": seed, | |
| "guidance_scale": 6.0, | |
| "embedded_guidance_scale": 1.0, | |
| "negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion", | |
| "cfg_for": False, | |
| } | |
| assert image is not None, "please input image" | |
| kwargs["image"] = load_image(image=image) | |
| #global predictor | |
| output = predictor.inference(kwargs) | |
| save_dir = f"./result/{task_type}" | |
| os.makedirs(save_dir, exist_ok=True) | |
| video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4" | |
| print(f"generate video, local path: {video_out_file}") | |
| export_to_video(output, video_out_file, fps=24) | |
| return video_out_file, kwargs | |
| def create_gradio_interface(): | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| image = gr.Image(label="Upload Image", type="filepath") | |
| prompt = gr.Textbox(label="Input Prompt") | |
| seed = gr.Number(label="Random Seed", value=-1) | |
| submit_button = gr.Button("Generate Video") | |
| output_video = gr.Video(label="Generated Video") | |
| output_params = gr.Textbox(label="Output Parameters") | |
| submit_button.click( | |
| fn=generate_video, | |
| inputs=[prompt, seed, image], | |
| outputs=[output_video, output_params], | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| #import multiprocessing | |
| #multiprocessing.freeze_support() | |
| #init_predictor() | |
| demo = create_gradio_interface() | |
| demo.launch() | |