Spaces:
Paused
Paused
revert to SkyReels-V1
Browse files
app.py
CHANGED
|
@@ -1,20 +1,19 @@
|
|
| 1 |
import spaces
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import argparse
|
| 4 |
import sys
|
|
|
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Removed environment-specific lines
|
| 12 |
from diffusers.utils import export_to_video
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
|
| 15 |
import torch
|
| 16 |
-
import logging
|
| 17 |
-
from collections import OrderedDict
|
| 18 |
|
| 19 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 20 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
@@ -25,309 +24,100 @@ torch.backends.cudnn.benchmark = False
|
|
| 25 |
torch.set_float32_matmul_precision("highest")
|
| 26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
I2V = 1
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class LlamaModel:
|
| 52 |
-
@staticmethod
|
| 53 |
-
def from_pretrained(*args, **kwargs):
|
| 54 |
-
return LlamaModel()
|
| 55 |
-
|
| 56 |
-
def to(self, device):
|
| 57 |
-
return self
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
class HunyuanVideoTransformer3DModel:
|
| 61 |
-
@staticmethod
|
| 62 |
-
def from_pretrained(*args, **kwargs):
|
| 63 |
-
return HunyuanVideoTransformer3DModel()
|
| 64 |
-
|
| 65 |
-
def to(self, device):
|
| 66 |
-
return self
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class SkyreelsVideoPipeline:
|
| 70 |
-
@staticmethod
|
| 71 |
-
def from_pretrained(*args, **kwargs):
|
| 72 |
-
return SkyreelsVideoPipeline()
|
| 73 |
-
|
| 74 |
-
def to(self, device):
|
| 75 |
-
return self
|
| 76 |
-
|
| 77 |
-
def __call__(self, *args, **kwargs):
|
| 78 |
-
num_frames = kwargs.get("num_frames", 16) # Default to 16 frames
|
| 79 |
-
height = kwargs.get("height", 512)
|
| 80 |
-
width = kwargs.get("width", 512)
|
| 81 |
-
|
| 82 |
-
if "image" in kwargs: # I2V
|
| 83 |
-
image = kwargs["image"]
|
| 84 |
-
# Convert PIL Image to PyTorch tensor (and normalize to [0, 1])
|
| 85 |
-
image_tensor = torch.from_numpy(np.array(image)).float() / 255.0
|
| 86 |
-
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0) # (H, W, C) -> (1, C, H, W)
|
| 87 |
-
|
| 88 |
-
# Create video by repeating the image
|
| 89 |
-
frames = image_tensor.repeat(1, 1, num_frames, 1, 1) # (1, C, T, H, W)
|
| 90 |
-
frames = frames + torch.randn_like(frames) * 0.05 # Add a little noise
|
| 91 |
-
# Correct shape: (1, C, T, H, W) - NO PERMUTE HERE
|
| 92 |
-
|
| 93 |
-
else: # T2V
|
| 94 |
-
frames = torch.randn(1, 3, num_frames, height, width) # (1, C, T, H, W) - Correct!
|
| 95 |
-
|
| 96 |
-
return type("obj", (object,), {"frames": frames})() # No longer a list!
|
| 97 |
-
|
| 98 |
-
def __init__(self):
|
| 99 |
-
super().__init__()
|
| 100 |
-
self._modules = OrderedDict()
|
| 101 |
-
self.vae = self.VAE()
|
| 102 |
-
self._modules["vae"] = self.vae
|
| 103 |
-
|
| 104 |
-
def named_children(self):
|
| 105 |
-
return self._modules.items()
|
| 106 |
-
|
| 107 |
-
class VAE:
|
| 108 |
-
def enable_tiling(self):
|
| 109 |
-
pass
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
def quantize_(*args, **kwargs):
|
| 113 |
-
return
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
def float8_weight_only():
|
| 117 |
-
return
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# --- End Dummy Classes ---
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
class SkyReelsVideoSingleGpuInfer:
|
| 124 |
-
def _load_model(
|
| 125 |
-
self, model_id: str, base_model_id: str = "hunyuanvideo-community/HunyuanVideo", quant_model: bool = True
|
| 126 |
-
):
|
| 127 |
-
logger.info(f"load model model_id:{model_id} quan_model:{quant_model}")
|
| 128 |
-
text_encoder = LlamaModel.from_pretrained(
|
| 129 |
-
base_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
|
| 130 |
-
).to("cpu")
|
| 131 |
-
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
| 132 |
-
model_id, torch_dtype=torch.bfloat16, device="cpu"
|
| 133 |
-
).to("cpu")
|
| 134 |
-
|
| 135 |
-
if quant_model:
|
| 136 |
-
quantize_(text_encoder, float8_weight_only())
|
| 137 |
-
text_encoder.to("cpu")
|
| 138 |
-
torch.cuda.empty_cache()
|
| 139 |
-
quantize_(transformer, float8_weight_only())
|
| 140 |
-
transformer.to("cpu")
|
| 141 |
-
torch.cuda.empty_cache()
|
| 142 |
-
|
| 143 |
-
pipe = SkyreelsVideoPipeline.from_pretrained(
|
| 144 |
-
base_model_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch.bfloat16
|
| 145 |
-
).to("cpu")
|
| 146 |
-
pipe.vae.enable_tiling()
|
| 147 |
-
torch.cuda.empty_cache()
|
| 148 |
-
return pipe
|
| 149 |
-
|
| 150 |
-
def __init__(
|
| 151 |
-
self,
|
| 152 |
-
task_type: TaskType,
|
| 153 |
-
model_id: str,
|
| 154 |
-
quant_model: bool = True,
|
| 155 |
-
is_offload: bool = True,
|
| 156 |
-
offload_config: OffloadConfig = OffloadConfig(),
|
| 157 |
-
enable_cfg_parallel: bool = True,
|
| 158 |
-
):
|
| 159 |
-
self.task_type = task_type
|
| 160 |
-
self.model_id = model_id
|
| 161 |
-
self.quant_model = quant_model
|
| 162 |
-
self.is_offload = is_offload
|
| 163 |
-
self.offload_config = offload_config
|
| 164 |
-
self.enable_cfg_parallel = enable_cfg_parallel
|
| 165 |
-
self.pipe = None
|
| 166 |
-
self.is_initialized = False
|
| 167 |
-
self.gpu_device = None
|
| 168 |
-
|
| 169 |
-
def initialize(self):
|
| 170 |
-
"""Initializes the model and moves it to the GPU."""
|
| 171 |
-
if self.is_initialized:
|
| 172 |
-
return
|
| 173 |
-
|
| 174 |
-
if not torch.cuda.is_available():
|
| 175 |
-
raise RuntimeError("CUDA is not available. Cannot initialize model.")
|
| 176 |
-
|
| 177 |
-
self.gpu_device = "cuda:0"
|
| 178 |
-
self.pipe = self._load_model(model_id=self.model_id, quant_model=self.quant_model)
|
| 179 |
-
|
| 180 |
-
if self.is_offload:
|
| 181 |
-
pass
|
| 182 |
-
else:
|
| 183 |
-
self.pipe.to(self.gpu_device)
|
| 184 |
-
|
| 185 |
-
if self.offload_config.compiler_transformer:
|
| 186 |
-
torch._dynamo.config.suppress_errors = True
|
| 187 |
-
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
| 188 |
-
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{self.offload_config.compiler_cache}"
|
| 189 |
-
self.pipe.transformer = torch.compile(
|
| 190 |
-
self.pipe.transformer, mode="max-autotune-no-cudagraphs", dynamic=True
|
| 191 |
-
)
|
| 192 |
-
if self.offload_config.compiler_transformer:
|
| 193 |
-
self.warm_up()
|
| 194 |
-
self.is_initialized = True
|
| 195 |
-
|
| 196 |
-
def warm_up(self):
|
| 197 |
-
if not self.is_initialized:
|
| 198 |
-
raise RuntimeError("Model must be initialized before warm-up.")
|
| 199 |
-
|
| 200 |
-
init_kwargs = {
|
| 201 |
-
"prompt": "A woman is dancing in a room",
|
| 202 |
-
"height": 544,
|
| 203 |
-
"width": 960,
|
| 204 |
-
"guidance_scale": 6,
|
| 205 |
-
"num_inference_steps": 1,
|
| 206 |
-
"negative_prompt": "bad quality",
|
| 207 |
-
"num_frames": 16,
|
| 208 |
-
"generator": torch.Generator(self.gpu_device).manual_seed(42),
|
| 209 |
-
"embedded_guidance_scale": 1.0,
|
| 210 |
-
}
|
| 211 |
-
if self.task_type == TaskType.I2V:
|
| 212 |
-
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
|
| 213 |
-
self.pipe(**init_kwargs)
|
| 214 |
-
logger.info("Warm-up complete.")
|
| 215 |
-
|
| 216 |
-
def infer(self, **kwargs):
|
| 217 |
-
"""Handles inference requests."""
|
| 218 |
-
if not self.is_initialized:
|
| 219 |
-
self.initialize()
|
| 220 |
-
if "seed" in kwargs:
|
| 221 |
-
kwargs["generator"] = torch.Generator(self.gpu_device).manual_seed(kwargs["seed"])
|
| 222 |
-
del kwargs["seed"]
|
| 223 |
-
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
| 224 |
-
result = self.pipe(**kwargs).frames # Return the tensor directly
|
| 225 |
-
return result
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
_predictor = None
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
@spaces.GPU(duration=90)
|
| 232 |
-
def generate_video(prompt: str, seed: int, image: str = None) -> tuple[str, dict]:
|
| 233 |
-
"""Generates a video based on the given prompt and seed.
|
| 234 |
-
|
| 235 |
-
Args:
|
| 236 |
-
prompt: The text prompt to guide video generation.
|
| 237 |
-
seed: The random seed for reproducibility.
|
| 238 |
-
image: Optional path to an image for Image-to-Video.
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
""
|
| 243 |
-
global _predictor
|
| 244 |
|
| 245 |
if seed == -1:
|
| 246 |
-
random.seed()
|
| 247 |
seed = int(random.randrange(4294967294))
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
"height": 512,
|
| 269 |
-
"width": 512,
|
| 270 |
-
"num_frames": 97,
|
| 271 |
-
"num_inference_steps": 30,
|
| 272 |
-
"seed": seed,
|
| 273 |
-
"guidance_scale": 6.0,
|
| 274 |
-
"embedded_guidance_scale": 1.0,
|
| 275 |
-
"negative_prompt": "Aerial view, low quality, bad hands",
|
| 276 |
-
"cfg_for": False,
|
| 277 |
-
}
|
| 278 |
-
|
| 279 |
-
if _predictor is None:
|
| 280 |
-
_predictor = SkyReelsVideoSingleGpuInfer(
|
| 281 |
-
task_type=task_type,
|
| 282 |
-
model_id=model_id,
|
| 283 |
-
quant_model=True,
|
| 284 |
-
is_offload=True,
|
| 285 |
-
offload_config=OffloadConfig(
|
| 286 |
-
high_cpu_memory=True,
|
| 287 |
-
parameters_level=True,
|
| 288 |
-
compiler_transformer=False,
|
| 289 |
-
),
|
| 290 |
-
)
|
| 291 |
-
_predictor.initialize()
|
| 292 |
-
logger.info("Predictor initialized")
|
| 293 |
-
|
| 294 |
-
with torch.no_grad():
|
| 295 |
-
output = _predictor.infer(**kwargs)
|
| 296 |
-
'''
|
| 297 |
-
output = (output.numpy() * 255).astype(np.uint8)
|
| 298 |
-
# Correct Transpose: (1, C, T, H, W) -> (1, T, H, W, C)
|
| 299 |
-
output = output.transpose(0, 2, 3, 4, 1)
|
| 300 |
-
output = output[0] # Remove batch dimension: (T, H, W, C)
|
| 301 |
-
'''
|
| 302 |
-
|
| 303 |
-
save_dir = f"./result"
|
| 304 |
os.makedirs(save_dir, exist_ok=True)
|
| 305 |
-
video_out_file = f"{save_dir}/{seed}.mp4"
|
| 306 |
print(f"generate video, local path: {video_out_file}")
|
| 307 |
export_to_video(output, video_out_file, fps=24)
|
| 308 |
return video_out_file, kwargs
|
| 309 |
|
| 310 |
|
| 311 |
-
def create_gradio_interface():
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
| 315 |
image = gr.Image(label="Upload Image", type="filepath")
|
| 316 |
prompt = gr.Textbox(label="Input Prompt")
|
| 317 |
seed = gr.Number(label="Random Seed", value=-1)
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
|
|
|
| 330 |
|
| 331 |
if __name__ == "__main__":
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import argparse
|
| 5 |
import sys
|
| 6 |
+
import time
|
| 7 |
import os
|
| 8 |
import random
|
| 9 |
+
#sys.path.append("..")
|
| 10 |
+
from skyreelsinfer import TaskType
|
| 11 |
+
from skyreelsinfer.offload import OffloadConfig
|
| 12 |
+
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer
|
|
|
|
| 13 |
from diffusers.utils import export_to_video
|
| 14 |
from diffusers.utils import load_image
|
| 15 |
|
| 16 |
import torch
|
|
|
|
|
|
|
| 17 |
|
| 18 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 19 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
|
| 24 |
torch.set_float32_matmul_precision("highest")
|
| 25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
|
| 27 |
+
predictor = None
|
| 28 |
+
task_type = None
|
| 29 |
+
|
| 30 |
+
def get_transformer_model_id(task_type:str) -> str:
|
| 31 |
+
return "Skywork/SkyReels-V1-Hunyuan-I2V" if task_type == "i2v" else "Skywork/SkyReels-V1-Hunyuan-T2V"
|
| 32 |
+
|
| 33 |
+
def init_predictor(task_type:str, gpu_num:int=1):
|
| 34 |
+
global predictor
|
| 35 |
+
predictor = SkyReelsVideoInfer(
|
| 36 |
+
task_type= TaskType.I2V if task_type == "i2v" else TaskType.T2V,
|
| 37 |
+
model_id=get_transformer_model_id(task_type),
|
| 38 |
+
quant_model=True,
|
| 39 |
+
world_size=gpu_num,
|
| 40 |
+
is_offload=True,
|
| 41 |
+
offload_config=OffloadConfig(
|
| 42 |
+
high_cpu_memory=True,
|
| 43 |
+
parameters_level=True,
|
| 44 |
+
compiler_transformer=False,
|
| 45 |
+
)
|
| 46 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def generate_video(prompt, seed, image=None):
|
| 49 |
+
global task_type
|
| 50 |
+
print(f"image:{type(image)}")
|
|
|
|
| 51 |
|
| 52 |
if seed == -1:
|
| 53 |
+
random.seed(time.time())
|
| 54 |
seed = int(random.randrange(4294967294))
|
| 55 |
+
|
| 56 |
+
kwargs = {
|
| 57 |
+
"prompt": prompt,
|
| 58 |
+
"height": 512,
|
| 59 |
+
"width": 512,
|
| 60 |
+
"num_frames": 97,
|
| 61 |
+
"num_inference_steps": 30,
|
| 62 |
+
"seed": seed,
|
| 63 |
+
"guidance_scale": 6.0,
|
| 64 |
+
"embedded_guidance_scale": 1.0,
|
| 65 |
+
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
| 66 |
+
"cfg_for": False,
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
if task_type == "i2v":
|
| 70 |
+
assert image is not None, "please input image"
|
| 71 |
+
kwargs["image"] = load_image(image=image)
|
| 72 |
+
global predictor
|
| 73 |
+
output = predictor.inference(kwargs)
|
| 74 |
+
save_dir = f"./result/{task_type}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
os.makedirs(save_dir, exist_ok=True)
|
| 76 |
+
video_out_file = f"{save_dir}/{prompt[:100].replace('/','')}_{seed}.mp4"
|
| 77 |
print(f"generate video, local path: {video_out_file}")
|
| 78 |
export_to_video(output, video_out_file, fps=24)
|
| 79 |
return video_out_file, kwargs
|
| 80 |
|
| 81 |
|
| 82 |
+
def create_gradio_interface(task_type):
|
| 83 |
+
"""Create a Gradio interface based on the task type."""
|
| 84 |
+
if task_type == "i2v":
|
| 85 |
+
with gr.Blocks() as demo:
|
| 86 |
+
with gr.Row():
|
| 87 |
image = gr.Image(label="Upload Image", type="filepath")
|
| 88 |
prompt = gr.Textbox(label="Input Prompt")
|
| 89 |
seed = gr.Number(label="Random Seed", value=-1)
|
| 90 |
+
submit_button = gr.Button("Generate Video")
|
| 91 |
+
output_video = gr.Video(label="Generated Video")
|
| 92 |
+
output_params = gr.Textbox(label="Output Parameters")
|
| 93 |
+
|
| 94 |
+
# Submit button logic
|
| 95 |
+
submit_button.click(
|
| 96 |
+
fn=generate_video,
|
| 97 |
+
inputs=[prompt, seed, image],
|
| 98 |
+
outputs=[output_video, output_params],
|
| 99 |
+
)
|
| 100 |
|
| 101 |
+
elif task_type == "t2v":
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
with gr.Row():
|
| 104 |
+
prompt = gr.Textbox(label="Input Prompt")
|
| 105 |
+
seed = gr.Number(label="Random Seed", value=-1)
|
| 106 |
+
submit_button = gr.Button("Generate Video")
|
| 107 |
+
output_video = gr.Video(label="Generated Video")
|
| 108 |
+
output_params = gr.Textbox(label="Output Parameters")
|
| 109 |
+
|
| 110 |
+
# Submit button logic
|
| 111 |
+
submit_button.click(
|
| 112 |
+
fn=generate_video,
|
| 113 |
+
inputs=[prompt, seed],
|
| 114 |
+
outputs=[output_video, output_params], # Pass task_type as additional input
|
| 115 |
+
)
|
| 116 |
|
| 117 |
+
return demo
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
| 120 |
+
# Parse command-line arguments
|
| 121 |
+
init_predictor(task_type="i2v", gpu_num=1)
|
| 122 |
+
demo = create_gradio_interface("i2v")
|
| 123 |
+
demo.launch()
|