Spaces:
Build error
Build error
Update skyreelsinfer/skyreels_video_infer.py
Browse files
skyreelsinfer/skyreels_video_infer.py
CHANGED
|
@@ -4,6 +4,17 @@ import time
|
|
| 4 |
from datetime import timedelta
|
| 5 |
from typing import Any
|
| 6 |
from typing import Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# DELAY ALL THESE IMPORTS:
|
| 9 |
# import torch
|
|
@@ -34,7 +45,7 @@ class SkyReelsVideoInfer:
|
|
| 34 |
model_id: str,
|
| 35 |
quant_model: bool = True,
|
| 36 |
is_offload: bool = True,
|
| 37 |
-
offload_config =
|
| 38 |
use_multiprocessing: bool = False,
|
| 39 |
):
|
| 40 |
self.task_type = task_type
|
|
@@ -42,7 +53,6 @@ class SkyReelsVideoInfer:
|
|
| 42 |
self.quant_model = quant_model
|
| 43 |
self.is_offload = is_offload
|
| 44 |
self.offload_config = offload_config
|
| 45 |
-
|
| 46 |
self._initialize_pipeline()
|
| 47 |
|
| 48 |
def _load_model(
|
|
@@ -52,31 +62,16 @@ class SkyReelsVideoInfer:
|
|
| 52 |
quant_model: bool = True,
|
| 53 |
device: str = "cuda",
|
| 54 |
):
|
| 55 |
-
# DELAYED IMPORTS:
|
| 56 |
-
import torch
|
| 57 |
-
from diffusers import HunyuanVideoTransformer3DModel
|
| 58 |
-
from diffusers import DiffusionPipeline
|
| 59 |
-
from PIL import Image
|
| 60 |
-
from transformers import LlamaModel
|
| 61 |
-
from torchao.quantization import float8_weight_only
|
| 62 |
-
from torchao.quantization import quantize_
|
| 63 |
-
from .pipelines import SkyreelsVideoPipeline # Local import
|
| 64 |
-
|
| 65 |
-
|
| 66 |
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} device:{device}")
|
| 67 |
-
|
| 68 |
text_encoder = LlamaModel.from_pretrained(
|
| 69 |
base_model_id,
|
| 70 |
subfolder="text_encoder",
|
| 71 |
torch_dtype=torch.bfloat16,
|
| 72 |
).to(device)
|
| 73 |
-
|
| 74 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
| 75 |
model_id,
|
| 76 |
torch_dtype=torch.bfloat16,
|
| 77 |
).to(device)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
if quant_model:
|
| 81 |
quantize_(text_encoder, float8_weight_only(), device=device)
|
| 82 |
quantize_(transformer, float8_weight_only(), device=device)
|
|
@@ -90,13 +85,9 @@ class SkyReelsVideoInfer:
|
|
| 90 |
return pipe
|
| 91 |
|
| 92 |
def _initialize_pipeline(self):
|
| 93 |
-
#More Delayed Imports
|
| 94 |
-
from .offload import Offload
|
| 95 |
-
|
| 96 |
self.pipe = self._load_model( #No : SkyreelsVideoPipeline
|
| 97 |
model_id=self.model_id, quant_model=self.quant_model, device="cuda"
|
| 98 |
)
|
| 99 |
-
|
| 100 |
if self.is_offload and self.offload_config:
|
| 101 |
Offload.offload(
|
| 102 |
pipeline=self.pipe,
|
|
@@ -104,8 +95,6 @@ class SkyReelsVideoInfer:
|
|
| 104 |
)
|
| 105 |
|
| 106 |
def inference(self, kwargs):
|
| 107 |
-
#DELAYED IMPORTS
|
| 108 |
-
from . import TaskType
|
| 109 |
if self.task_type == TaskType.I2V:
|
| 110 |
image = kwargs.pop("image")
|
| 111 |
output = self.pipe(image=image, **kwargs)
|
|
|
|
| 4 |
from datetime import timedelta
|
| 5 |
from typing import Any
|
| 6 |
from typing import Dict
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import HunyuanVideoTransformer3DModel
|
| 9 |
+
from diffusers import DiffusionPipeline
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from transformers import LlamaModel
|
| 12 |
+
from torchao.quantization import float8_weight_only
|
| 13 |
+
from torchao.quantization import quantize_
|
| 14 |
+
from .pipelines import SkyreelsVideoPipeline # Local import
|
| 15 |
+
from .offload import Offload
|
| 16 |
+
from .offload import OffloadConfig
|
| 17 |
+
from . import TaskType
|
| 18 |
|
| 19 |
# DELAY ALL THESE IMPORTS:
|
| 20 |
# import torch
|
|
|
|
| 45 |
model_id: str,
|
| 46 |
quant_model: bool = True,
|
| 47 |
is_offload: bool = True,
|
| 48 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
| 49 |
use_multiprocessing: bool = False,
|
| 50 |
):
|
| 51 |
self.task_type = task_type
|
|
|
|
| 53 |
self.quant_model = quant_model
|
| 54 |
self.is_offload = is_offload
|
| 55 |
self.offload_config = offload_config
|
|
|
|
| 56 |
self._initialize_pipeline()
|
| 57 |
|
| 58 |
def _load_model(
|
|
|
|
| 62 |
quant_model: bool = True,
|
| 63 |
device: str = "cuda",
|
| 64 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} device:{device}")
|
|
|
|
| 66 |
text_encoder = LlamaModel.from_pretrained(
|
| 67 |
base_model_id,
|
| 68 |
subfolder="text_encoder",
|
| 69 |
torch_dtype=torch.bfloat16,
|
| 70 |
).to(device)
|
|
|
|
| 71 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
| 72 |
model_id,
|
| 73 |
torch_dtype=torch.bfloat16,
|
| 74 |
).to(device)
|
|
|
|
|
|
|
| 75 |
if quant_model:
|
| 76 |
quantize_(text_encoder, float8_weight_only(), device=device)
|
| 77 |
quantize_(transformer, float8_weight_only(), device=device)
|
|
|
|
| 85 |
return pipe
|
| 86 |
|
| 87 |
def _initialize_pipeline(self):
|
|
|
|
|
|
|
|
|
|
| 88 |
self.pipe = self._load_model( #No : SkyreelsVideoPipeline
|
| 89 |
model_id=self.model_id, quant_model=self.quant_model, device="cuda"
|
| 90 |
)
|
|
|
|
| 91 |
if self.is_offload and self.offload_config:
|
| 92 |
Offload.offload(
|
| 93 |
pipeline=self.pipe,
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
def inference(self, kwargs):
|
|
|
|
|
|
|
| 98 |
if self.task_type == TaskType.I2V:
|
| 99 |
image = kwargs.pop("image")
|
| 100 |
output = self.pipe(image=image, **kwargs)
|