Spaces:
Build error
Build error
| import spaces | |
| import gradio as gr | |
| import sys | |
| import time | |
| import os | |
| import random | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
| # Create the gr.State component *outside* the gr.Blocks context | |
| predictor_state = gr.State(None) | |
| def get_transformer_model_id(task_type: str) -> str: | |
| if task_type == "i2v": | |
| return "Skywork/skyreels-v1-Hunyuan-i2v" | |
| else: | |
| return "Skywork/skyreels-v1-Hunyuan-t2v" | |
| def init_predictor(task_type: str): | |
| # ALL IMPORTS NOW INSIDE THIS FUNCTION | |
| import torch | |
| from skyreelsinfer import TaskType | |
| from skyreelsinfer.offload import OffloadConfig | |
| from skyreelsinfer.skyreels_video_infer import SkyReelsVideoInfer | |
| from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError | |
| try: | |
| predictor = SkyReelsVideoInfer( | |
| task_type=TaskType.I2V if task_type == "i2v" else TaskType.T2V, | |
| model_id=get_transformer_model_id(task_type), | |
| quant_model=True, | |
| is_offload=True, | |
| offload_config=OffloadConfig( | |
| high_cpu_memory=True, | |
| parameters_level=True, | |
| ), | |
| use_multiprocessing=False, | |
| ) | |
| return "Model loaded successfully!", predictor # Return predictor | |
| except (RepositoryNotFoundError, RevisionNotFoundError, EntryNotFoundError) as e: | |
| return f"Error: Model not found. Details: {e}", None | |
| except Exception as e: | |
| return f"Error loading model: {e}", None | |
| def generate_video(prompt, seed, image, task_type, predictor): # predictor as argument | |
| # IMPORTS INSIDE THIS FUNCTION TOO | |
| from diffusers.utils import export_to_video | |
| from diffusers.utils import load_image | |
| import os | |
| if task_type == "i2v" and not isinstance(image, str): | |
| return "Error: For i2v, provide image path.", "{}" | |
| if not isinstance(prompt, str) or not isinstance(seed, (int, float)): | |
| return "Error: Invalid inputs.", "{}" | |
| if seed == -1: | |
| random.seed(time.time()) | |
| seed = int(random.randrange(4294967294)) | |
| kwargs = { | |
| "prompt": prompt, | |
| "height": 256, | |
| "width": 256, | |
| "num_frames": 24, | |
| "num_inference_steps": 30, | |
| "seed": int(seed), | |
| "guidance_scale": 7.0, | |
| "embedded_guidance_scale": 1.0, | |
| "negative_prompt": "bad quality, blur", | |
| "cfg_for": False, | |
| } | |
| if task_type == "i2v": | |
| if image is None or not os.path.exists(image): | |
| return "Error: Image not found.", "{}" | |
| try: | |
| kwargs["image"] = load_image(image=image) | |
| except Exception as e: | |
| return f"Error loading image: {e}", "{}" | |
| try: | |
| if predictor is None: | |
| return "Error: Model not init.", "{}" | |
| output = predictor.inference(kwargs) | |
| frames = output | |
| save_dir = f"./result/{task_type}" | |
| os.makedirs(save_dir, exist_ok=True) | |
| video_out_file = f"{save_dir}/{prompt[:100]}_{int(seed)}.mp4" | |
| print(f"Generating video: {video_out_file}") | |
| export_to_video(frames, video_out_file, fps=24) | |
| return video_out_file | |
| except Exception as e: | |
| return f"Error: {e}", "{}" | |
| # --- Minimal Gradio Interface --- | |
| with gr.Blocks() as demo: | |
| task_type_dropdown = gr.Dropdown( | |
| choices=["i2v", "t2v"], label="Task", value="t2v", elem_id="task_type" | |
| ) | |
| load_model_button = gr.Button("Load Model", elem_id="load_button") | |
| prompt_textbox = gr.Textbox(label="Prompt", elem_id="prompt") | |
| generate_button = gr.Button("Generate", elem_id="generate_button") | |
| output_textbox = gr.Textbox(label="Output", elem_id="output") # Just a textbox | |
| output_video = gr.Video(label="Output Video", elem_id="output_video") # Just a textbox | |
| load_model_button.click( | |
| fn=init_predictor, | |
| inputs=[task_type_dropdown], | |
| outputs=[output_textbox, predictor_state], # Correct order of outputs | |
| ) | |
| generate_button.click( | |
| fn=generate_video, | |
| inputs=[prompt_textbox, task_type_dropdown, predictor_state], | |
| outputs=[output_video], | |
| ) | |
| demo.launch() |