""" como usar 1.instalar la libreria deepface pip install deepface 2. instanciar el modelo emo = f_my_emotion.Age_Model() 3. ingresar una imagen donde solo se vea un rostro (usar modelo deteccion de rostros para extraer una imagen con solo el rostro) emo.predict_age(face_image) """ #from basemodels import VGGFace from deepface.basemodels import VGGFace import os from pathlib import Path import gdown import numpy as np from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation from keras.preprocessing import image import cv2 class Age_Model(): def __init__(self): self.model = self.loadModel() self.output_indexes = np.array([i for i in range(0, 101)]) def predict_age(self,face_image): image_preprocesing = self.transform_face_array2age_face(face_image) age_predictions = self.model.predict(image_preprocesing )[0,:] result_age = self.findApparentAge(age_predictions) return result_age def loadModel(self): model = VGGFace.baseModel() #-------------------------- classes = 101 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation('softmax')(base_model_output) #-------------------------- age_model = Model(inputs=model.input, outputs=base_model_output) #-------------------------- #load weights home = str(Path.home()) if os.path.isfile(home+'/.deepface/weights/age_model_weights.h5') != True: print("age_model_weights.h5 will be downloaded...") url = 'https://drive.google.com/uc?id=1YCox_4kJ-BYeXq27uUbasu--yz28zUMV' output = home+'/.deepface/weights/age_model_weights.h5' gdown.download(url, output, quiet=False) age_model.load_weights(home+'/.deepface/weights/age_model_weights.h5') return age_model #-------------------------- def findApparentAge(self,age_predictions): apparent_age = np.sum(age_predictions * self.output_indexes) return apparent_age def transform_face_array2age_face(self,face_array,grayscale=False,target_size = (224, 224)): detected_face = face_array if grayscale == True: detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) detected_face = cv2.resize(detected_face, target_size) img_pixels = image.img_to_array(detected_face) img_pixels = np.expand_dims(img_pixels, axis = 0) #normalize input in [0, 1] img_pixels /= 255 return img_pixels