Spaces:
Configuration error
Configuration error
import config as cfg | |
import cv2 | |
import numpy as np | |
from keras.models import load_model | |
from keras.preprocessing.image import img_to_array | |
class predict_emotions(): | |
def __init__(self): | |
# cargo modelo de deteccion de emociones | |
self.model = load_model(cfg.path_model) | |
def preprocess_img(self,face_image,rgb=True,w=48,h=48): | |
face_image = cv2.resize(face_image, (w,h)) | |
if rgb == False: | |
face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY) | |
face_image = face_image.astype("float") / 255.0 | |
face_image= img_to_array(face_image) | |
face_image = np.expand_dims(face_image, axis=0) | |
return face_image | |
def get_emotion(self,img,boxes_face): | |
emotions = [] | |
if len(boxes_face)!=0: | |
for box in boxes_face: | |
y0,x0,y1,x1 = box | |
face_image = img[x0:x1,y0:y1] | |
# preprocesar data | |
face_image = self.preprocess_img(face_image ,cfg.rgb, cfg.w, cfg.h) | |
# predecir imagen | |
prediction = self.model.predict(face_image) | |
emotion = cfg.labels[prediction.argmax()] | |
emotions.append(emotion) | |
else: | |
emotions = [] | |
boxes_face = [] | |
return boxes_face,emotions | |