import gradio as gr from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("MahmoudH/t5-v1_1-base-finetuned-sci_summ") model = TFAutoModelForSeq2SeqLM.from_pretrained("MahmoudH/t5-v1_1-base-finetuned-sci_summ") def predict(text): text = "summarize: " + text tokenized_inputs = tokenizer([text]) output = model.generate( input_ids=tokenized_inputs["input_ids"], attention_mask=tokenized_inputs["attention_mask"], max_new_tokens=256, length_penalty=0.5, num_beams=4, do_sample=True ) summary = tokenizer.batch_decode(output, skip_special_tokens=True)[0] return summary input_box = gr.Textbox(label="Input") output_box = gr.Textbox(label="Summary") gr.Interface(fn=predict, inputs=input_box, outputs=output_box).launch()