Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from loadimg import load_img
|
| 3 |
-
import spaces
|
| 4 |
from transformers import AutoModelForImageSegmentation
|
| 5 |
import torch
|
| 6 |
from torchvision import transforms
|
| 7 |
from typing import Union, Tuple
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
-
torch.set_float32_matmul_precision(
|
|
|
|
|
|
|
| 11 |
|
| 12 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 13 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 14 |
)
|
| 15 |
-
birefnet.to(
|
| 16 |
-
|
| 17 |
-
transform_image = transforms.Compose(
|
| 18 |
-
[
|
| 19 |
-
transforms.Resize((1024, 1024)),
|
| 20 |
-
transforms.ToTensor(),
|
| 21 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 22 |
-
]
|
| 23 |
-
)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
Args:
|
| 32 |
-
image (PIL.Image or str): The input image, either as a PIL object or a filepath/URL string.
|
| 33 |
-
Returns:
|
| 34 |
-
tuple:
|
| 35 |
-
- processed_image (PIL.Image): The input image with the background removed and transparency applied.
|
| 36 |
-
- origin (PIL.Image): The original RGB image, unchanged.
|
| 37 |
-
"""
|
| 38 |
-
im = load_img(image, output_type="pil")
|
| 39 |
-
im = im.convert("RGB")
|
| 40 |
-
origin = im.copy()
|
| 41 |
-
processed_image = process(im)
|
| 42 |
-
return (processed_image, origin)
|
| 43 |
|
| 44 |
-
@spaces.GPU
|
| 45 |
def process(image: Image.Image) -> Image.Image:
|
| 46 |
-
"""
|
| 47 |
-
Apply BiRefNet-based image segmentation to remove the background.
|
| 48 |
-
This function preprocesses the input image, runs it through a BiRefNet segmentation model to obtain a mask,
|
| 49 |
-
and applies the mask as an alpha (transparency) channel to the original image.
|
| 50 |
-
Args:
|
| 51 |
-
image (PIL.Image): The input RGB image.
|
| 52 |
-
Returns:
|
| 53 |
-
PIL.Image: The image with the background removed, using the segmentation mask as transparency.
|
| 54 |
-
"""
|
| 55 |
image_size = image.size
|
| 56 |
-
input_images = transform_image(image).unsqueeze(0).to(
|
| 57 |
-
# Prediction
|
| 58 |
with torch.no_grad():
|
| 59 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 60 |
pred = preds[0].squeeze()
|
|
@@ -63,17 +33,15 @@ def process(image: Image.Image) -> Image.Image:
|
|
| 63 |
image.putalpha(mask)
|
| 64 |
return image
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def process_file(f: str) -> str:
|
| 67 |
-
"""
|
| 68 |
-
Load an image file from disk, remove the background, and save the output as a transparent PNG.
|
| 69 |
-
Args:
|
| 70 |
-
f (str): Filepath of the image to process.
|
| 71 |
-
Returns:
|
| 72 |
-
str: Path to the saved PNG image with background removed.
|
| 73 |
-
"""
|
| 74 |
name_path = f.rsplit(".", 1)[0] + ".png"
|
| 75 |
-
im = load_img(f, output_type="pil")
|
| 76 |
-
im = im.convert("RGB")
|
| 77 |
transparent = process(im)
|
| 78 |
transparent.save(name_path)
|
| 79 |
return name_path
|
|
@@ -85,17 +53,22 @@ image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
|
| 85 |
url_input = gr.Textbox(label="Paste an image URL")
|
| 86 |
output_file = gr.File(label="Output PNG File")
|
| 87 |
|
| 88 |
-
# Example images
|
| 89 |
chameleon = load_img("butterfly.jpg", output_type="pil")
|
| 90 |
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 91 |
|
| 92 |
-
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1,
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
demo = gr.TabbedInterface(
|
| 97 |
-
[tab1, tab2, tab3],
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
if __name__ == "__main__":
|
| 101 |
-
demo.launch(show_error=True,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from loadimg import load_img
|
|
|
|
| 3 |
from transformers import AutoModelForImageSegmentation
|
| 4 |
import torch
|
| 5 |
from torchvision import transforms
|
| 6 |
from typing import Union, Tuple
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
torch.set_float32_matmul_precision("high")
|
| 10 |
+
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
| 13 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 14 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 15 |
)
|
| 16 |
+
birefnet.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
transform_image = transforms.Compose([
|
| 19 |
+
transforms.Resize((1024, 1024)),
|
| 20 |
+
transforms.ToTensor(),
|
| 21 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
| 22 |
+
[0.229, 0.224, 0.225]),
|
| 23 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
| 25 |
def process(image: Image.Image) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
image_size = image.size
|
| 27 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
|
|
|
| 28 |
with torch.no_grad():
|
| 29 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 30 |
pred = preds[0].squeeze()
|
|
|
|
| 33 |
image.putalpha(mask)
|
| 34 |
return image
|
| 35 |
|
| 36 |
+
def fn(image: Union[Image.Image, str]) -> Tuple[Image.Image, Image.Image]:
|
| 37 |
+
im = load_img(image, output_type="pil").convert("RGB")
|
| 38 |
+
origin = im.copy()
|
| 39 |
+
processed_image = process(im)
|
| 40 |
+
return processed_image, origin
|
| 41 |
+
|
| 42 |
def process_file(f: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
name_path = f.rsplit(".", 1)[0] + ".png"
|
| 44 |
+
im = load_img(f, output_type="pil").convert("RGB")
|
|
|
|
| 45 |
transparent = process(im)
|
| 46 |
transparent.save(name_path)
|
| 47 |
return name_path
|
|
|
|
| 53 |
url_input = gr.Textbox(label="Paste an image URL")
|
| 54 |
output_file = gr.File(label="Output PNG File")
|
| 55 |
|
|
|
|
| 56 |
chameleon = load_img("butterfly.jpg", output_type="pil")
|
| 57 |
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
| 58 |
|
| 59 |
+
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1,
|
| 60 |
+
examples=[chameleon], api_name="image")
|
| 61 |
+
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2,
|
| 62 |
+
examples=[url_example], api_name="text")
|
| 63 |
+
tab3 = gr.Interface(process_file, inputs=image_file_upload,
|
| 64 |
+
outputs=output_file, examples=["butterfly.jpg"],
|
| 65 |
+
api_name="png")
|
| 66 |
|
| 67 |
demo = gr.TabbedInterface(
|
| 68 |
+
[tab1, tab2, tab3],
|
| 69 |
+
["Image Upload", "URL Input", "File Output"],
|
| 70 |
+
title="Background Removal Tool"
|
| 71 |
)
|
| 72 |
|
| 73 |
if __name__ == "__main__":
|
| 74 |
+
demo.launch(show_error=True, server_name="0.0.0.0", server_port=7860)
|