Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
5 |
-
|
6 |
model_names = [
|
7 |
"0-ma/swin-geometric-shapes-tiny",
|
8 |
"0-ma/mobilenet-v2-geometric-shapes",
|
@@ -15,16 +15,29 @@ model_names = [
|
|
15 |
"0-ma/vit-geometric-shapes-tiny",
|
16 |
]
|
17 |
|
18 |
-
example_images = [
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
]
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
feature_extractors = {model_name: AutoImageProcessor.from_pretrained(model_name) for model_name in model_names}
|
30 |
classification_models = {model_name: AutoModelForImageClassification.from_pretrained(model_name) for model_name in model_names}
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
5 |
+
import os
|
6 |
model_names = [
|
7 |
"0-ma/swin-geometric-shapes-tiny",
|
8 |
"0-ma/mobilenet-v2-geometric-shapes",
|
|
|
15 |
"0-ma/vit-geometric-shapes-tiny",
|
16 |
]
|
17 |
|
18 |
+
# example_images = [
|
19 |
+
# 'example/1_None.jpg',
|
20 |
+
# 'example/2_Circle.jpg',
|
21 |
+
# 'example/3_Triangle.jpg',
|
22 |
+
# 'example/4_Square.jpg',
|
23 |
+
# 'example/5_Pentagone.jpg',
|
24 |
+
# 'example/6_Hexagone.jpg'
|
25 |
+
# ]
|
26 |
|
27 |
+
example_dir = "./example"
|
28 |
+
example_images = []
|
29 |
+
for example_image in os.list_dir(example_dir):
|
30 |
+
example_images+= [os.path.join(example_dir,example_image)]
|
31 |
+
|
32 |
+
#labels = [example.split("_")[1].split(".")[0] for example in example_images]
|
33 |
+
labels = [
|
34 |
+
'None',
|
35 |
+
'Circle',
|
36 |
+
'Triangle',
|
37 |
+
'Square',
|
38 |
+
'Pentagone',
|
39 |
+
'Hexagone'
|
40 |
+
]
|
41 |
|
42 |
feature_extractors = {model_name: AutoImageProcessor.from_pretrained(model_name) for model_name in model_names}
|
43 |
classification_models = {model_name: AutoModelForImageClassification.from_pretrained(model_name) for model_name in model_names}
|