sooh098 commited on
Commit
9f9d745
·
verified ·
1 Parent(s): 357ecb3

Upload folder using huggingface_hub

Browse files
4bit_test.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import torch
4
+ import random
5
+ import numpy as np
6
+ from tqdm import tqdm
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
8
+
9
+ # === 시드 고정 ===
10
+ seed = 42
11
+ torch.manual_seed(seed)
12
+ random.seed(seed)
13
+ np.random.seed(seed)
14
+ if torch.cuda.is_available():
15
+ torch.cuda.manual_seed_all(seed)
16
+ torch.backends.cudnn.deterministic = True
17
+ torch.backends.cudnn.benchmark = False
18
+ print(f"🔒 시드 고정 완료 (seed={seed})")
19
+
20
+ # === 설정 ===
21
+ fp16_ckpt = "sooh098/midmb-kculture-qa"
22
+ test_json_path = "../data/korean_culture_qa_V1.0_test+.json"
23
+ test_jsonl_path = "../data/test.jsonl"
24
+ output_json_path = "../data/output.json"
25
+ use_cuda = torch.cuda.is_available()
26
+
27
+ # === 4bit 설정 ===
28
+ bnb_config = BitsAndBytesConfig(
29
+ load_in_4bit=True,
30
+ bnb_4bit_quant_type="nf4",
31
+ bnb_4bit_compute_dtype=torch.float16
32
+ )
33
+
34
+ # === 모델 및 토크나이저 로딩 ===
35
+ print("🚀 4bit 모델 로드 중...")
36
+ tokenizer = AutoTokenizer.from_pretrained(
37
+ fp16_ckpt,
38
+ trust_remote_code=True,
39
+ use_fast=True
40
+ )
41
+
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ fp16_ckpt,
44
+ quantization_config=bnb_config,
45
+ device_map={"": 0},
46
+ torch_dtype=torch.float16 if use_cuda else torch.float32,
47
+ trust_remote_code=True
48
+ )
49
+ model.eval()
50
+ print("✅ 4bit 모델 로드 완료")
51
+
52
+ # === 예측 시작 ===
53
+ predictions = []
54
+ with open(test_jsonl_path, "r", encoding="utf-8") as f:
55
+ lines = f.readlines()
56
+
57
+ for i, line in enumerate(tqdm(lines, desc="🔍 예측 생성 중", unit="샘플")):
58
+ sample = json.loads(line)
59
+ input_text = sample["input"]
60
+ instruction = sample.get("instruction", "")
61
+
62
+ # Midm 프롬프트 포맷
63
+ prompt = (
64
+ "<|begin_of_text|>\n"
65
+ f"<|start_header_id|>system<|end_header_id|>\n{instruction}\n"
66
+ "<|eot_id|>\n"
67
+ f"<|start_header_id|>user<|end_header_id|>\n{input_text}\n"
68
+ "<|eot_id|>\n"
69
+ "<|start_header_id|>assistant<|end_header_id|>\n"
70
+ )
71
+
72
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
73
+ if "token_type_ids" in inputs:
74
+ del inputs["token_type_ids"]
75
+
76
+ with torch.no_grad():
77
+ # 시드 고정 (매번 동일한 결과를 위해)
78
+ torch.manual_seed(seed)
79
+ output_ids = model.generate(
80
+ **inputs,
81
+ max_new_tokens=256,
82
+ repetition_penalty=1.05,
83
+ temperature=0.28,
84
+ top_p=0.85,
85
+ top_k=20,
86
+ do_sample=True,
87
+ eos_token_id=tokenizer.eos_token_id,
88
+ pad_token_id=tokenizer.pad_token_id
89
+ )
90
+
91
+ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=False)
92
+ raw_response = output_text.split("<|start_header_id|>assistant<|end_header_id|>\n")[-1]
93
+ prediction = raw_response.split("<|end_of_text|>")[0].strip()
94
+ predictions.append(prediction)
95
+
96
+ print(f"\n📝 샘플 {i + 1}")
97
+ print(f"🤖 예측: {prediction}")
98
+
99
+ # === 원본 JSON 불러오기 ===
100
+ with open(test_json_path, "r", encoding="utf-8") as f:
101
+ test_data = json.load(f)
102
+
103
+ # === 예측 결과 추가 ===
104
+ for i, item in enumerate(test_data):
105
+ answer = predictions[i] if i < len(predictions) else ""
106
+ item["output"] = {"answer": answer}
107
+
108
+ # === 결과 저장 ===
109
+ os.makedirs(os.path.dirname(output_json_path), exist_ok=True)
110
+ with open(output_json_path, "w", encoding="utf-8") as f:
111
+ json.dump(test_data, f, ensure_ascii=False, indent=2)
112
+
113
+ print(f"\n✅ 최종 결과가 '{output_json_path}'에 저장되었습니다.")
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ko
5
+ tags:
6
+ - korean
7
+ - midm
8
+ - text-generation
9
+ - 국립국어원
10
+ - 말평
11
+ base_model:
12
+ - K-intelligence/Midm-2.0-Base-Instruct
13
+ pipeline_tag: text-generation
14
+ library_name: transformers
15
+ ---
16
+
17
+ # 🏛️ 과제 개요
18
+
19
+ 본 모델은 **국립국어원 ‘AI 말평 경진대회’**의
20
+ 「[2025]한국문화 질의응답」 과제를 위해 개발되었습니다.
21
+
22
+ > **🧑‍💻 팀명: 다마고치**
23
+
24
+ ---
25
+
26
+ # 🔤 Korean Culture QA Model (한국 문화 QA)
27
+
28
+ 본 모델은 위 과제 수행을 위해 설계된 한국 문화 QA 모델입니다.
29
+
30
+ ---
31
+
32
+ ## 📌 모델 개요
33
+
34
+ - **베이스 모델**: `K-intelligence/Midm-2.0-Base-Instruct`
35
+ - **파인튜닝 방식**: QLoRA(4bit) 기반 LoRA 어댑터 미세조정(PEFT)
36
+ - **사용 목적**: 한국 문화 기반의 QA 태스크 (선다형, 단답형, 서술형)
37
+
38
+ ## 📎 참고
39
+
40
+ - 데이터 출처: [2025]한국문화 질의응답(가 유형)](https://kli.korean.go.kr/benchmark/taskOrdtm/taskList.do?taskOrdtmId=180&clCd=END_TASK&subMenuId=sub01)
chat_template.jinja ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+
3
+ {%- if not date_string is defined %}
4
+ {%- if strftime_now is defined %}
5
+ {%- set date_string = strftime_now('%d %b %Y') %}
6
+ {%- else %}
7
+ {%- set date_string = '04 Jul 2025' %}
8
+ {%- endif %}
9
+ {%- endif %}
10
+
11
+ {%- if messages[0].role == "system" %}
12
+ {%- set system_message = messages[0].content | trim %}
13
+ {%- set messages = messages[1:] %}
14
+ {%- endif %}
15
+
16
+ {{- '<|start_header_id|>system<|end_header_id|>\n\n' }}
17
+ {%- if tools is not none %}
18
+ {{- 'Environment: ipython\n' }}
19
+ {%- endif %}
20
+
21
+ {{- 'Cutting Knowledge Date: December 2024\n' }}
22
+ {{- 'Today Date: ' + date_string + '\n\n' }}
23
+ {{- 'Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다. 너는 Mi:dm으로서 사용자에게 유용하고 안전한 응답을 제공해야 한다.\n\n' }}
24
+ {{- 'Mi:dm은 December 2024까지의 지식으로 학습되었으며 그 외의 지식을 묻는 경우에는 한계를 인정해야 한다.\n' }}
25
+ {{- '오늘 날짜는 ' + date_string + '임을 참고하여 응답을 제공한다.\n\n' }}
26
+ {{- '어시스턴트는 기본적으로 "한국어"를 사용한다. 사용자의 요청에 따라 생각하고 응답하는 언어는 달라질 수 있으며, 다른 요구사항이 없다면 입력 언어를 따라 응답하라.\n' }}
27
+ {{- '코드 작성 시에는 요구되는 언어의 소스코드로 작성해야 하며, STEM(과학, 기술, 공학, 수학) 분야의 전문 용어는 원문을 그대로 유지하여 출력한다.\n\n' }}
28
+ {{- 'Mi:dm은 사용자 친화적으로 답변을 제공해야 한다. 사용자의 요청이 없다면 기본적으로 경어체를 사용해야 한다.\n' }}
29
+ {{- '사용자의 요청에 따라 유용하고 관련성 있는 답변을 제공해야 한다. 이는 요청의 내용을 반영하여 이루어져야 한다.\n' }}
30
+ {{- '특히, 사용자가 특정 답변의 형태를 요구한 경우 해당 형태를 반드시 준수하여 응답을 제공한다.(예. JSON, SQL, 코드 등) 그렇지 않다면 응답을 제공하기 가장 적절한 형태로 제공한다.\n' }}
31
+ {{- '다양한 시각이 존재하는 주제에 대해서는 중립적인 입장을 유지해야 하지만, 한국 특화 인공지능 어시스턴트로서 정치적, 역사적, 외교적으로 한국인의 입장에서 응답을 생성해야 한다.\n' }}
32
+ {{- '모호하거나 복잡한 요청으로 인해 답변 작성이 어려운 경우, 다시 한 번 생각해보고 추가정보를 요청해야 한다.\n\n' }}
33
+ {{- 'Mi:dm은 응답을 제공할 때 어시스턴트의 안전성 측면에서 다음 지침을 *반드시* 준수해야 한다.\n' }}
34
+ {{- '- 비속어와 욕설을 사용하지 않아야 한다.\n' }}
35
+ {{- '- 신뢰할 수 있는 응답을 생성하고, 전문영역에 대한 한계와 불확실성을 인정해야 한다.\n' }}
36
+ {{- '- 사회의 보편적 규범과 가치에 따라 윤리적이고 중립적이어야 하며, 편향성을 지녀서는 안 된다.\n' }}
37
+ {{- '- 인공지능으로서의 정체성을 인지하고 의인화하지 않아야 한다.\n' }}
38
+ {{- '- 개인정보, 사생활 등 민감정보를 포함한 요청에 대한 답변을 거절해야 한다. 다만, 해당정보를 사용할 수 없는 형태(비식별화된 형태)로 제공하는 것은 제한적으로 응답을 허용한다.\n\n' }}
39
+ {{- '이 모든 지침은 응답을 제공할 때 출력되지 않아야 한다.\n\n' }}
40
+ {{- 'Mi:dm은 사용자의 요청을 처리하기 위해 제공된 도구(함수)를 호출할 수 있다.\n' }}
41
+
42
+ {%- if tools %}
43
+ {{- 'Mi:dm은 도구 사용시 아래 규칙을 준수해야 한다.\n' }}
44
+ {{- '- 제공된 도구만 사용하고, 모든 필수 인자를 반드시 포함한다.\n' }}
45
+ {{- '- 주어진 tool_name을 임의로 변경하지 않아야 한다.\n' }}
46
+ {{- '- 도구를 호출하는 경우, 마지막은 도구 호출로 끝내며 그 뒤에 텍스트를 출력하지 않는다.\n' }}
47
+ {{- '- 도구 호출 결과를 활용하여 응답을 생성한다.\n' }}
48
+ {{- '- 도구가 필요하지 않은 경우에는 일반적인 방식으로 응답한다.\n' }}
49
+ {{- '- 도구 호출 정보는 다음과 같이 <tool_call></tool_call> XML 태그 사이에 작성한다.\n' }}
50
+ {{- '<tool_call>\n{"name": "tool_name", "arguments": {"param": "value"}}\n</tool_call>\n\n' }}
51
+ {{- 'tool_list:' }} {{ tools | tojson() }}
52
+ {%- endif %}
53
+
54
+ {{- system_message }}
55
+ {{- '<|eot_id|>' }}
56
+
57
+ {%- for message in messages %}
58
+ {%- if (message.role == "user") or (message.role == "system") %}
59
+ {{- '<|start_header_id|>' + message.role + '<|end_header_id|>\n\n' + message.content | trim }}
60
+ {%- elif message.role == "assistant" %}
61
+ {{- '<|start_header_id|>' + message.role + '<|end_header_id|>\n\n' + message.content | trim }}
62
+ {%- if message.tool_calls %}
63
+ {%- for tool_call in message.tool_calls %}
64
+ {%- if tool_call.function %}
65
+ {%- set tool_call = tool_call.function %}
66
+ {%- endif %}
67
+ {{- '<tool_call>\n{"name": "' }}
68
+ {{- tool_call.name }}
69
+ {{- '", "arguments": ' }}
70
+ {%- if tool_call.arguments is string %}
71
+ {{- tool_call.arguments }}
72
+ {%- else %}
73
+ {{- tool_call.arguments | tojson }}
74
+ {%- endif %}
75
+ {{- '}\n</tool_call>' }}
76
+ {%- endfor %}
77
+ {%- endif %}
78
+ {%- elif message.role == "tool" %}
79
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
80
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' }}
81
+ {%- endif %}
82
+ {{- '<tool_response>\n' }}
83
+ {{- message.content }}
84
+ {{- '\n</tool_response>' }}
85
+ {%- endif %}
86
+ {{- '<|eot_id|>' }}
87
+ {%- endfor %}
88
+
89
+ {%- if add_generation_prompt %}
90
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
91
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 0,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_dropout_prob": 0.0,
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 14336,
16
+ "max_position_embeddings": 32768,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 48,
21
+ "num_key_value_heads": 8,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": null,
25
+ "rope_theta": 8000000,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.52.4",
29
+ "use_cache": true,
30
+ "vocab_size": 131384
31
+ }
dataset.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ # === 설정 ===
5
+ BASE_INPUT_DIR = "../data/"
6
+ BASE_OUTPUT_DIR = "../data/"
7
+ TEST_FILE = "korean_culture_qa_V1.0_test+.json"
8
+ OUTPUT_TEST = "test.jsonl"
9
+
10
+ # === 인스트럭션 템플릿 ===
11
+ INSTRUCTION_TEMPLATES = {
12
+ "선다형": """당신은 한국의 전통 문화, 역사, 사회, 과학기술 등 다양한 주제에 대한 객관식 문제에 정확하게 답하는 AI입니다.
13
+
14
+ [문제 유형: 선다형]
15
+ - 질문과 보기를 읽고 가장 적절한 정답을 고르십시오.
16
+ - 정답은 보기 번호에 해당하는 숫자 하나만 출력하십시오.
17
+ - 질문이나 보기 내용을 다시 출력하지 말고, 숫자만 단독으로 출력하십시오.
18
+
19
+ [예시]
20
+ 질문: 1896년에 창간된 한국 최초의 민간 신문은?
21
+ 1\t황성신문 2\t한성순보 3\t제국신문 4\t독립신문 5\t대한매일신보
22
+ 답변: 4""",
23
+
24
+ "단답형-단어": """당신은 한국의 전통 문화, 역사, 사회, 과학기술 등 다양한 주제에 대한 짧은 단답형 질문에 정확하게 답하는 AI입니다.
25
+
26
+ [문제 유형: 단답형-단어]
27
+ - 질문에 대해 1~2단어 또는 5어절 이내의 짧은 구로 정답을 출력하십시오.
28
+ - 동일 의미의 복수 정답이 존재할 수 있으나, 그중 하나만 정확하게 출력하십시오.
29
+ - 설명, 반복, 형식 문구 없이 정답만 단독으로 출력하십시오.
30
+
31
+ [예시]
32
+ 질문: 2005년에 개관하였으며, 교육 및 문화적 목적으로 영화를 상영하는 서울의 유일한 비영리 민간 시네마테크 전용관은 어디인가요?
33
+ 답변: 서울아트시네마""",
34
+
35
+ "단답형-순서": """당신은 한국의 전통 문화, 역사, 사회, 과학기술 등 다양한 주제에 대한 순서 배열 문제에 정확하게 답하는 AI입니다.
36
+
37
+ [문제 유형: 단답형-순서]
38
+ - 보기의 기호(예: ㄱ, ㄴ, ㄷ, ㄹ)를 순서대로 하이픈(-)으로 연결하여 출력하십시오.
39
+ - 설명이나 추가 텍스트 없이 순서만 출력하십시오.
40
+
41
+ [예시]
42
+ 질문: 서울 지하철 신림선을 서원역에서 샛강 방향으로 탔을 때 지나가는 역을 순서대로 나열하세요. 배열 시 각 기호는 '-'로 연결합니다.
43
+ ㄱ. 당곡역 ㄴ. 서울지방병무청역 ㄷ. 대방역 ㄹ. 보라매역
44
+ 답변: ㄱ-ㄹ-ㄴ-ㄷ""",
45
+
46
+ "서술형": """당신은 한국의 전통 문화, 역사, 사회, 과학기술 등 다양한 주제에 대해 명확하고 논리적인 설명문을 작성하는 AI입니다.
47
+
48
+ [문제 유형: 서술형]
49
+ - 질문에 대해 300자에서 500자 사이의 하나의 문단으로 구성된 설명문을 작성하십시오.
50
+ - 배경, 절차, 원인, 예시 등을 바탕으로 독자가 쉽게 이해할 수 있도록 구체적으로 서술하십시오.
51
+ - 모든 문장은 문어체 "~이다" 형식으로 종결하고, 동일 문장의 반복이나 불필요한 수식어는 피하십시오.
52
+
53
+ [예시 1]
54
+ 질문: 2024년 기준 한국의 일반 가정에서 태양광 발전기를 설치하고 싶으면 어떻게 해야 하나요?
55
+ 답변: 일반 가정에서 태양광 발전기를 설치하기 위해서는 한국에너지공단 '그린홈'에서 시공업체를 선택한 뒤 업체가 가정을 방문하여 설치 가능 여부 및 적절성을 평가하는 과정이 먼저 이루어져야 한다. 적절성 평가에 통과되면 업체가 사업신청서를 그린홈에 제출하고 공단의 검토를 받게 된다. 공단의 승인이 난 후 신청자가 예치금을 납부하게 되며 그 후 설비를 시작한다. 설비는 선정한 업체에 의해 이루어진다. 설치가 완료되면 설치 확인 절차를 거쳐 신청자에게 보조금이 지급된다. 초기 설치 비용이 부담되는 경우 대여 사업자를 통해 태양광 발전기를 대여하는 방법도 있다.
56
+
57
+ [예시 2]
58
+ 질문: 한국에서 고등학교 교육과정을 마치지 않고도 고등학교를 졸업한 것과 같이 학력 인정을 받을 수 있는 방법은 무엇인가요?
59
+ 답변: 고등학교 교육 과정을 마치지 않더라도 고등학교를 졸업한 사람들과 같은 수준의 학력으로 인정을 받기 위해서는 고등학교 졸업 학력 검정고시에 합격해야 한다. 검정고시는 지식, 학력, 기술의 유무를 검정하기 위하여 입학 자격 또는 특정한 자격 취득 과정에서 실시하는 시험이다. 따라서 고등학교 졸업 학력 검정고시에 합격하면 고등학교를 졸업한 자와 동등한 자격을 인정받게 된다. 검정고시는 각 과목을 100점 만점으로 하여 전 과목 평균 60점 이상 취득한 자를 합격자로 결정하고 있다. 다만 평균이 60점 이상이더라도 결시 과목이 있는 경우에는 불합격 처리된다.
60
+
61
+ [예시 3]
62
+ 질문: 누리호에 대한 정보와 그 의의에 관해 설명해 보세요.
63
+ 답변: 누리호는 한국항공우주연구원에서 개발한 국내 최초의 실용위성급 위성발사체로서, 이는 우리나라가 독자적으로 개발한 첫 번째 실��급 위성발사체라는 점에서 큰 의미를 가진다. 누리호는 단순히 외국 기술에 의존하지 않고, 우리나라 기술진의 힘으로 설계부터 시작하여 제작, 시험, 그리고 최종 발사 운용에 이르기까지 모든 과정을 독자적으로 수행한 발사체이다. 특히, 누리호의 개발과 발사는 단발성이 아닌 단계적으로 진행되었으며, 1호기는 2021년도에 성공적으로 발사되었고, 이후 2호기는 2022년도에, 마지막으로 3호기는 2023년도에 각각 발사되었다. 이로써 한국은 실용급 위성 발사체를 자국 기술로 운영할 수 있는 국가로 자리매김하게 되었다.
64
+
65
+ [예시 4]
66
+ 질문: 김대중 대통령이 2000년 노벨평화상을 받게 되었던 이유는?
67
+ 답변: 김대중 전 대통령이 노벨평화상을 받은 이유는 한반도의 평화와 남북 화해를 위한 탁월한 노력 때문이다. 그는 대한민국 최초의 평화적 여야 정권 교체를 이루며 제15대 대통령에 취임하였다. 재임 중에는 외환위기 극복과 사회개혁에도 힘썼다. 특히 2000년에는 분단 이후 최초로 남북정상회담을 성사시켜 6·15 남북공동선언을 이끌어냈다. 이는 분단 55년 만의 첫 남북정상회담에서 나온 선언문이었다. 선언을 통해 이산가족 상봉, 경의선·동해선 복원, 경제협력 확대 등 실질적인 평화 조치가 이루어졌으며, 이러한 공로로 김대중 대통령은 한국 최초의 노벨평화상 수상자가 되었다.
68
+
69
+ ====="""
70
+ }
71
+
72
+ # === 기타 정보 매핑 ===
73
+ info_map = {
74
+ "category": "분야",
75
+ "domain": "세부 분야",
76
+ "topic_keyword": "주제"
77
+ }
78
+
79
+ def convert_items(data, remove_hash=True, is_test=False):
80
+ converted = []
81
+ for item in data:
82
+ input_info = item.get("input", {})
83
+ output_info = item.get("output", {})
84
+
85
+ question_type = input_info.get("question_type")
86
+ question = input_info.get("question", "").strip()
87
+ raw_answer = output_info.get("answer", "").strip() if not is_test else ""
88
+
89
+ # 단답형 분류
90
+ if question_type == "단답형":
91
+ if "순서" in question or "차례" in question:
92
+ instruction = INSTRUCTION_TEMPLATES["단답형-순서"]
93
+ else:
94
+ instruction = INSTRUCTION_TEMPLATES["단답형-단어"]
95
+ else:
96
+ if question_type not in INSTRUCTION_TEMPLATES:
97
+ continue
98
+ instruction = INSTRUCTION_TEMPLATES[question_type]
99
+
100
+ # '#' 제거 옵션(학습용에만 사용, 테스트는 그대로)
101
+ answer = raw_answer
102
+ if remove_hash and "#" in answer:
103
+ answer = answer.split("#")[0].strip()
104
+
105
+ # input_text 생성
106
+ extras = []
107
+ for key, label in info_map.items():
108
+ if input_info.get(key):
109
+ extras.append(f"- {label}: {input_info[key]}")
110
+
111
+ input_text = ""
112
+ if extras:
113
+ input_text += "[기타 정보]\n" + "\n".join(extras) + "\n\n"
114
+ input_text += f"질문: {question}\n답변:"
115
+
116
+ converted.append({
117
+ "instruction": instruction,
118
+ "input": input_text,
119
+ "output": answer
120
+ })
121
+ return converted
122
+
123
+ def convert_test(test_file, output_file):
124
+ with open(test_file, "r", encoding="utf-8") as f:
125
+ test_data = json.load(f)
126
+
127
+ test_converted = convert_items(test_data, remove_hash=False, is_test=True)
128
+ os.makedirs(os.path.dirname(output_file), exist_ok=True)
129
+ with open(output_file, "w", encoding="utf-8") as f:
130
+ for item in test_converted:
131
+ f.write(json.dumps(item, ensure_ascii=False) + "\n")
132
+
133
+ print(f"✅ test 변환 완료: {output_file} (총 {len(test_converted)} 샘플)")
134
+
135
+ if __name__ == "__main__":
136
+ convert_test(
137
+ os.path.join(BASE_INPUT_DIR, TEST_FILE),
138
+ os.path.join(BASE_OUTPUT_DIR, OUTPUT_TEST)
139
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "repetition_penalty": 1.05,
6
+ "temperature": 0.8,
7
+ "top_k": 20,
8
+ "top_p": 0.7,
9
+ "transformers_version": "4.52.4"
10
+ }
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b788412b3a9d543f0ee57454687d8f2e311e3898f046789c657e2409da645d
3
+ size 4884865928
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:844564bf8bba027f82f2746f8d35aabe09ffeb47dd0c1f74809b2b682435b7d0
3
+ size 4999819224
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fb54c170a46746f938ac07c475ea56a72141c325aacd784b2aa399f69bea278
3
+ size 4915916080
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cce3c6d9e225a33c6cf25b27895b9e5ebe5d75764b99674aba7414bb5e5821e
3
+ size 4915916080
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4460d604c0f7b305d937f95372965c86edd7c70354265f4a4bbf3aefd6ead0c0
3
+ size 3374888592
model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 23091355648
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00004-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00004-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00004-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00004-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00004-of-00005.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00004-of-00005.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00005-of-00005.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00005-of-00005.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00005-of-00005.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00005-of-00005.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00005-of-00005.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00005-of-00005.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
395
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
396
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
397
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
398
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
399
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
400
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
401
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
409
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
410
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
411
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
412
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
413
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
414
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
415
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
416
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
417
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
418
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
419
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
420
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
421
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
422
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
423
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
424
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
425
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
426
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
427
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
428
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
429
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
430
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
431
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
432
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
433
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
434
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
435
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
436
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
437
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
438
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
440
+ "model.norm.weight": "model-00005-of-00005.safetensors"
441
+ }
442
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<|end_of_text|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "131301": {
28
+ "content": "<|eot_id|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "131302": {
36
+ "content": "<|start_header_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "131303": {
44
+ "content": "<|end_header_id|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "131304": {
52
+ "content": "<|eop_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "131305": {
60
+ "content": "<|begin_of_passage|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "131306": {
68
+ "content": "<|end_of_passage|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "131307": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "131308": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "131309": {
92
+ "content": "<ref>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "131310": {
100
+ "content": "</ref>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "131311": {
108
+ "content": "<box>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "131312": {
116
+ "content": "</box>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "131313": {
124
+ "content": "<quad>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "131314": {
132
+ "content": "</quad>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "131315": {
140
+ "content": "<imgpad>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "131316": {
148
+ "content": "<table>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "131317": {
156
+ "content": "</table>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "131318": {
164
+ "content": "<tr>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "131319": {
172
+ "content": "</tr>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "131320": {
180
+ "content": "<td>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "131321": {
188
+ "content": "</td>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "131322": {
196
+ "content": "<chart>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "131323": {
204
+ "content": "</chart>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "131324": {
212
+ "content": "<caption>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "131325": {
220
+ "content": "<thead>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "131326": {
228
+ "content": "<tbody>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "131327": {
236
+ "content": "<tfoot>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "131328": {
244
+ "content": "<th>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "131329": {
252
+ "content": "</caption>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "131330": {
260
+ "content": "</thead>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "131331": {
268
+ "content": "</tbody>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "131332": {
276
+ "content": "</tfoot>\"",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "131333": {
284
+ "content": "</th>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "131334": {
292
+ "content": "<h1>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "131335": {
300
+ "content": "<h2>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "131336": {
308
+ "content": "<h3>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "131337": {
316
+ "content": "<h4>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "131338": {
324
+ "content": "<h5>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "131339": {
332
+ "content": "<h6>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "131340": {
340
+ "content": "<blockquote>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "131341": {
348
+ "content": "</h1>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "131342": {
356
+ "content": "</h2>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "131343": {
364
+ "content": "</h4>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "131344": {
372
+ "content": "</h5>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "131345": {
380
+ "content": "</h6>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "131346": {
388
+ "content": "</blockquote>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "131347": {
396
+ "content": "<strong>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "131348": {
404
+ "content": "<em>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "131349": {
412
+ "content": "<b>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "131350": {
420
+ "content": "<i>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "131351": {
428
+ "content": "<u>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "131352": {
436
+ "content": "<sub>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "131353": {
444
+ "content": "<sup>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "131354": {
452
+ "content": "<code>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "131355": {
460
+ "content": "</strong>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "131356": {
468
+ "content": "</em>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "131357": {
476
+ "content": "</b>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "131358": {
484
+ "content": "</i>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "131359": {
492
+ "content": "</u>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "131360": {
500
+ "content": "</sub>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "131361": {
508
+ "content": "</sup>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "131362": {
516
+ "content": "</code>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "131363": {
524
+ "content": "<|finetune_right_pad_id|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "131364": {
532
+ "content": "<|eom_id|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "131365": {
540
+ "content": "<|python_tag|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "131366": {
548
+ "content": "#@이름@#",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "131367": {
556
+ "content": "#@ID@#",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "131368": {
564
+ "content": "#@주민번호@#",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "131369": {
572
+ "content": "#@이메일@#",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "131370": {
580
+ "content": "#@계좌번호@#",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "131371": {
588
+ "content": "#@전화번호@#",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "131372": {
596
+ "content": "#@주소@#",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "131373": {
604
+ "content": "#@자동차번호@#",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "131374": {
612
+ "content": "#@사업자등록번호@#",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "131375": {
620
+ "content": "#@자동차운전면허번호@#",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "131376": {
628
+ "content": "#@여권번호@#",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "131377": {
636
+ "content": "#@외국인등록번호@#",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "131378": {
644
+ "content": "#@건보번호@#",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "131379": {
652
+ "content": "#@신용카드번호@#",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "131380": {
660
+ "content": "#@IP@#",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "131381": {
668
+ "content": "#@MAC주소@#",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "131382": {
676
+ "content": "#@SNS계정@#",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "131383": {
684
+ "content": "#@통관번호#",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ }
691
+ },
692
+ "bos_token": "<|begin_of_text|>",
693
+ "clean_up_tokenization_spaces": true,
694
+ "content": "<|end_of_text|>",
695
+ "eos_token": "<|end_of_text|>",
696
+ "extra_special_tokens": {},
697
+ "legacy": false,
698
+ "lstrip": false,
699
+ "model_max_length": 1000000000000000019884624838656,
700
+ "normalized": false,
701
+ "pad_token": "<|end_of_text|>",
702
+ "rstrip": false,
703
+ "single_word": false,
704
+ "tokenizer_class": "PreTrainedTokenizer"
705
+ }