{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78e331da3380>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e331da3420>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e331da34c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e331da3560>", "_build": "<function ActorCriticPolicy._build at 0x78e331da3600>", "forward": "<function ActorCriticPolicy.forward at 0x78e331da36a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e331da3740>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e331da37e0>", "_predict": "<function ActorCriticPolicy._predict at 0x78e331da3880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e331da3920>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e331da39c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e331da3a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e3321a5e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738620920612585170, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOA/IT4KUVU++NuFveGLQr6STZ09sg+FvQAAAAAAAAAAmhHKPGQM3z1yXUi9/tAxvmMgNz1KGBU9AAAAAAAAAAAATMi74RyJutvNZrWJsZCuGoJUu26rnzQAAIA/AACAPw2Znr3E4IM9U3GyPXWsZb69Nog8/QA+PAAAAAAAAAAAZs4GPHl0Aj7rr8s8ko8svqTImT2Xno69AAAAAAAAAAAaN+K9UHUvPzYFdz4We66+R5XEPCo9hT0AAAAAAAAAALp2TT7u0PU+SbM5voQkiL6Qj+I8ZpzXvQAAAAAAAAAATT4mvQjgg7xQqTU7e4jIO6oy6T28NrG8AACAPwAAgD8AfI08cS1GuQqcAD5/fDm+Z7yaPPV4fb8AAAAAAACAPwAzBb0pMHS61oiyNjGVrDF9zX+6E83TtQAAgD8AAIA/My5+vZyZRj3gGds9bZFTvvMPmLwI4Mw8AAAAAAAAAABataK9ESGHPhpWwT0frHe+tICkvEj03jwAAAAAAAAAAKYWjr12rGS8Ct4COyyVtjyd2se96pOSPQAAgD8AAIA/8wvrPbYjWz+WnLq9ym2PvlddfzzFMma9AAAAAAAAAADmAK89FJrQusCtYDxmFDe8rUC9uzcoH70AAIA/AACAP7NQNb3pSLc/IIcfvzZWWz3iruQ8vQrVPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBy7655JK+MAWyUTSUBjAF0lEdAkmmaunuRcXV9lChoBkdAcNPkauOjqWgHTVgBaAhHQJJqMTg2qDN1fZQoaAZHQGx2u0kWykdoB006AWgIR0CSayKEFnqWdX2UKGgGR0ByKFQQ+UyIaAdNIwFoCEdAkmuQ6IWP93V9lChoBkdAbmFW1+iJwmgHTUoBaAhHQJJtFs9B8hN1fZQoaAZHQHAUBEBsANpoB00cAWgIR0CSbWlIVdondX2UKGgGR0Bwsw+NcW0raAdNJwFoCEdAkm2GVzIV/XV9lChoBkdAczhpwCKaX2gHTS4BaAhHQJJtn3WWhRJ1fZQoaAZHQHD6v+bVjI9oB00aAWgIR0CSbaw8nuzAdX2UKGgGR0Bw7bQtz0YkaAdNKwFoCEdAkm54MjNY83V9lChoBkdAbThooNNJv2gHTT8BaAhHQJJu5gLJCBx1fZQoaAZHQHJ57CvX9R9oB01pAWgIR0CSb6qPOpsHdX2UKGgGR0BudoaNuLrHaAdNkgFoCEdAkm/wUxmCiHV9lChoBkdAb78dwvQF92gHTXkBaAhHQJJxo32mHgx1fZQoaAZHQHC3HMdLg4xoB00GAWgIR0CSdKO4XoC/dX2UKGgGR0Bx/vACW/rTaAdNVwFoCEdAknamQ8wHq3V9lChoBkdAboefIS13MmgHTU0BaAhHQJJ3b5oGpuN1fZQoaAZHQG4xvyLAHmloB00rAWgIR0CSd9yt3fQ8dX2UKGgGR0BxDRq8DjioaAdNLAFoCEdAknh+uaF23nV9lChoBkdAccF6nR9gGGgHTZ0BaAhHQJJ52nZTQ3R1fZQoaAZHQHDm3fuTibVoB00rAWgIR0CSejBK+SKWdX2UKGgGR0BwEkuEmICVaAdNMgFoCEdAknqghGH58HV9lChoBkdAb4gW2w3YMGgHTSMBaAhHQJJ7L1vl2eR1fZQoaAZHQHE23gYP5HpoB01EAWgIR0CSey5PM0P6dX2UKGgGR0BwRPdWQwK0aAdNUgFoCEdAkntEofCAMHV9lChoBkdAcdSnlnyup2gHTRMBaAhHQJJ7WIBRyfd1fZQoaAZHQHHATI3irDJoB01QAWgIR0CSfAp9ZzPsdX2UKGgGR0Bwy3posZpBaAdNawFoCEdAknwcynDR+nV9lChoBkdAb7hIAfdRBWgHTT8BaAhHQJJ8jCGetjl1fZQoaAZHQHJ14DgZTAFoB00+AWgIR0CSfaFd9lVcdX2UKGgGR0BuYJGhEjPfaAdNBgFoCEdAkn4A2ETQFHV9lChoBkdAcBNs9jgAImgHTSkBaAhHQJKALY4ACGN1fZQoaAZHQHJqn/giu+1oB00fAWgIR0CSgF0/W1+idX2UKGgGR0Byr5R77bcoaAdNKAFoCEdAkoDyfL9uP3V9lChoBkdAcNoAu7HyVmgHTSQBaAhHQJKC+j0th/l1fZQoaAZHQHAvGyon8bdoB00lAWgIR0CSg7VZs9B9dX2UKGgGR0BtRmFSKm8/aAdNRAFoCEdAkoPIgRsdk3V9lChoBkdAb+sZ88cMmWgHTTYBaAhHQJKEet7rs0J1fZQoaAZHQHB+CMo+fRNoB00WAWgIR0CShI5sTFl1dX2UKGgGR0BxNRSJj2BbaAdNEgFoCEdAkoUz81n/UHV9lChoBkdAcn2Drqt5lmgHTXQBaAhHQJKFQPuogmt1fZQoaAZHQHCqOPV/c35oB000AWgIR0CShYXL/0dzdX2UKGgGR0BwGPyVfNRnaAdNXwFoCEdAkoX8otthu3V9lChoBkdAcGCyMDOkcmgHTccBaAhHQJKG/U9ZA6d1fZQoaAZHQHDOR5ooNNJoB02UAWgIR0CSh1rZrYXgdX2UKGgGR0BtB9Cqp97XaAdNTAFoCEdAkohJ22XsxHV9lChoBkdAcElBUaQ3gmgHTWgBaAhHQJKbOFPBSDR1fZQoaAZHQG4ckvboKUpoB00lAWgIR0CSm24J/oaDdX2UKGgGR0BFTEDyOJcgaAdL2GgIR0CSm/o0ALiNdX2UKGgGR0BxDKXdCVrzaAdNVQFoCEdAkpz2HDaXbHV9lChoBkdAcgPNg0CRwWgHTUsBaAhHQJKdLgeii7F1fZQoaAZHQHIHnsLORkpoB00qAWgIR0CSnfOEdvKmdX2UKGgGR0Bw/CLiuMdcaAdNDwFoCEdAkp7vrGBFu3V9lChoBkdAcOEUCJXQt2gHTTkBaAhHQJKfCLuQZGd1fZQoaAZHQHE0G47Rv3toB00fAWgIR0CSn8a3qiXZdX2UKGgGR0BwMJxBE8aGaAdNEgFoCEdAkp/XbZezEHV9lChoBkdAcTZh1DBuXWgHTUQBaAhHQJKgAZ88cMp1fZQoaAZHQHCN41YQrc1oB01MAWgIR0CSoL+/xlQNdX2UKGgGR0ByvrUDuBtlaAdNIAFoCEdAkqEbqptJnXV9lChoBkdAcd6ikwevIWgHTYYBaAhHQJKh20Y0l7d1fZQoaAZHQHMcJAyEcsFoB005AWgIR0CSolsLORkmdX2UKGgGR0BSurel9BrvaAdLqmgIR0CSonlq8DjjdX2UKGgGR0BwUvHaN+9baAdNJgFoCEdAkqL2QwK0D3V9lChoBkdAbKcR+SbH62gHTR0BaAhHQJKkVh+fAbh1fZQoaAZHQG15X5WRzRxoB003AWgIR0CSpP6+WWyDdX2UKGgGR0Bx7ilANXo1aAdNIQFoCEdAkqZlQEZBLXV9lChoBkdAcwyBEroW6GgHTRwBaAhHQJKnXBWPtD51fZQoaAZHQHLGtBnjABVoB01yAWgIR0CSqE41P3zudX2UKGgGR0BuH8MXrMTwaAdNFwFoCEdAkqib56+nInV9lChoBkdAb5eJBPbfxmgHTSkBaAhHQJKpP4Fiay91fZQoaAZHQHDzuzQeFL5oB00UAWgIR0CSqXZLIxQBdX2UKGgGR0BvOvSncclxaAdNFgFoCEdAkql3TRYzSHV9lChoBkdAb/TMEidJ8WgHTTMBaAhHQJKr/Hhjvux1fZQoaAZHQG9fnryDqW1oB00PAWgIR0CSrCyksSTRdX2UKGgGR0BxrEla8pTdaAdNEQFoCEdAkqzmlZX+2nV9lChoBkdAcTef0VafSWgHTSMBaAhHQJKtekJrtVt1fZQoaAZHQHMRvlQuVX5oB00WAWgIR0CSrZ4Pf8/EdX2UKGgGR0BwM8FdLQHBaAdNggFoCEdAkq3zx9XtB3V9lChoBkdAcr9TZg5R0mgHS+xoCEdAkq4dW6shgXV9lChoBkdAcjRAq/dqL2gHTW4BaAhHQJKueh8IAwR1fZQoaAZHQHGeLMC9ytFoB00gAWgIR0CSruZF5OafdX2UKGgGR0BwYtnUUfxMaAdNJQFoCEdAkrCP+fh/AnV9lChoBkdAcJBmkWRA8mgHTRQBaAhHQJKxbEbYK6Z1fZQoaAZHQHDMN34bjtJoB008AWgIR0CSsfe3x4IKdX2UKGgGR0BxgFTOxB3SaAdNHQFoCEdAkrJaJEYwZnV9lChoBkdAcUrYjjaPCGgHTSUBaAhHQJKywxh2GIt1fZQoaAZHQHDlx/y5I6NoB008AWgIR0CSstPGyX2NdX2UKGgGR0Bxl9KoQ4CIaAdNFAFoCEdAkrRFIZqEe3V9lChoBkdAbqb2Rq46O2gHTRABaAhHQJK1SyNXHR11fZQoaAZHQHJXdfw7T2FoB01+AWgIR0CStXZqmCRPdX2UKGgGR0BxnY8KXv6TaAdNKAFoCEdAkrXxvegte3V9lChoBkdAcMst+1Bt12gHTUABaAhHQJK2O4H5aeR1fZQoaAZHQHJdAdGRV6xoB00oAWgIR0CStmRE4NqhdX2UKGgGR0BwSrbN8ma6aAdNXQFoCEdAkrZw04zabnV9lChoBkdAcBYvUBnzx2gHTSkBaAhHQJK2oCcPOIJ1fZQoaAZHQHB3CiItUXJoB00dAWgIR0CStrGnn+yadX2UKGgGR0A2+LFGXokiaAdL5WgIR0CSt/brTpgUdX2UKGgGR0Buftucc2itaAdNBAFoCEdAkrf/IfbKzXV9lChoBkdAcIkzTF2mpGgHTU4BaAhHQJK4Q0sOG0x1fZQoaAZHQHEljgAIY3xoB00jAWgIR0CSut1x82JjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |