milyiyo commited on
Commit
f6d0d20
·
1 Parent(s): fc91c97

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -3
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: mit
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
@@ -38,13 +39,42 @@ poema:
38
  texto: Todos fueron a verle pasar
39
  ```
40
 
41
- ## Intended uses & limitations
42
 
43
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## Training and evaluation data
46
 
47
- More information needed
 
 
 
 
 
 
 
 
 
48
 
49
  ## Training procedure
50
 
 
1
  ---
2
  license: mit
3
+ language: es
4
  tags:
5
  - generated_from_trainer
6
  model-index:
 
39
  texto: Todos fueron a verle pasar
40
  ```
41
 
42
+ ### How to use
43
 
44
+ You can use this model directly with a pipeline for masked language modeling:
45
+
46
+ ```python
47
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
48
+ model_name = 'hackathon-pln-es/poem-gen-spanish-t5-small'
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
51
+
52
+ author, sentiment, word, start_text = 'Pablo Neruda', 'positivo', 'cielo', 'Todos fueron a la plaza'
53
+ input_text = f"""poema: estilo: {author} && sentimiento: {sentiment} && palabras: {word} && texto: {start_text} """
54
+ inputs = tokenizer(input_text, return_tensors="pt")
55
+
56
+ outputs = model.generate(inputs["input_ids"],
57
+ do_sample = True,
58
+ max_length = 30,
59
+ repetition_penalty = 20.0,
60
+ top_k = 50,
61
+ top_p = 0.92)
62
+ detok_outputs = [tokenizer.decode(x, skip_special_tokens=True) for x in outputs]
63
+ res = detok_outputs[0]
64
+ ```
65
 
66
  ## Training and evaluation data
67
 
68
+ The original dataset has the columns `author`, `content` and `title`.
69
+ For each poem we generate new examples:
70
+ - content: *line_i* , generated: *line_i+1*
71
+ - content: *concatenate(line_i, line_i+1)* , generated: *line_i+2*
72
+ - content: *concatenate(line_i, line_i+1, line_i+2)* , generated: *line_i+3*
73
+
74
+ The resulting dataset has the columns `author`, `content`, `title` and `generated`.
75
+
76
+ For each example we compute the sentiment of the generated column and the nouns. In the case of sentiment, we used the model `mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis` and for nouns extraction we used spaCy.
77
+
78
 
79
  ## Training procedure
80