Training in progress, step 3000, checkpoint
Browse files
last-checkpoint/adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5323528
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d9f1330624d49e1cfa068a1cfd37e35fba53b8c452104e1861364c4b2bcc193
|
3 |
size 5323528
|
last-checkpoint/optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 10707706
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e1273154004834ff66e75e29f96e8a925d89006ab79c55eac7eeca115990223
|
3 |
size 10707706
|
last-checkpoint/rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14244
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:635c549447e6d040590768c59571f091ceb0002258d8b337cb9e12c5e9806440
|
3 |
size 14244
|
last-checkpoint/scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66074cbfdf1af5e0486634010580a05d2b8863ee9a8c7ccf5e54b33878144bd6
|
3 |
size 1064
|
last-checkpoint/trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "bart_lora_outputs\\checkpoint-
|
4 |
-
"epoch": 4.
|
5 |
"eval_steps": 100,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -1707,13 +1707,353 @@
|
|
1707 |
"eval_samples_per_second": 89.035,
|
1708 |
"eval_steps_per_second": 11.177,
|
1709 |
"step": 2500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1710 |
}
|
1711 |
],
|
1712 |
"logging_steps": 10,
|
1713 |
"max_steps": 6130,
|
1714 |
"num_train_epochs": 10,
|
1715 |
"save_steps": 500,
|
1716 |
-
"total_flos":
|
1717 |
"trial_name": null,
|
1718 |
"trial_params": null
|
1719 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.4271390736103058,
|
3 |
+
"best_model_checkpoint": "bart_lora_outputs\\checkpoint-3000",
|
4 |
+
"epoch": 4.893964110929853,
|
5 |
"eval_steps": 100,
|
6 |
+
"global_step": 3000,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
1707 |
"eval_samples_per_second": 89.035,
|
1708 |
"eval_steps_per_second": 11.177,
|
1709 |
"step": 2500
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 4.09,
|
1713 |
+
"learning_rate": 0.0006429840142095915,
|
1714 |
+
"loss": 0.4375,
|
1715 |
+
"step": 2510
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 4.11,
|
1719 |
+
"learning_rate": 0.0006412078152753108,
|
1720 |
+
"loss": 0.4485,
|
1721 |
+
"step": 2520
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 4.13,
|
1725 |
+
"learning_rate": 0.0006394316163410302,
|
1726 |
+
"loss": 0.4633,
|
1727 |
+
"step": 2530
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 4.14,
|
1731 |
+
"learning_rate": 0.0006376554174067496,
|
1732 |
+
"loss": 0.4457,
|
1733 |
+
"step": 2540
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 4.16,
|
1737 |
+
"learning_rate": 0.0006358792184724689,
|
1738 |
+
"loss": 0.4504,
|
1739 |
+
"step": 2550
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 4.18,
|
1743 |
+
"learning_rate": 0.0006341030195381882,
|
1744 |
+
"loss": 0.4719,
|
1745 |
+
"step": 2560
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 4.19,
|
1749 |
+
"learning_rate": 0.0006323268206039076,
|
1750 |
+
"loss": 0.4223,
|
1751 |
+
"step": 2570
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 4.21,
|
1755 |
+
"learning_rate": 0.0006305506216696269,
|
1756 |
+
"loss": 0.4481,
|
1757 |
+
"step": 2580
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 4.23,
|
1761 |
+
"learning_rate": 0.0006287744227353463,
|
1762 |
+
"loss": 0.4371,
|
1763 |
+
"step": 2590
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 4.24,
|
1767 |
+
"learning_rate": 0.0006269982238010657,
|
1768 |
+
"loss": 0.4284,
|
1769 |
+
"step": 2600
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 4.24,
|
1773 |
+
"eval_loss": 0.44260162115097046,
|
1774 |
+
"eval_runtime": 13.1231,
|
1775 |
+
"eval_samples_per_second": 89.232,
|
1776 |
+
"eval_steps_per_second": 11.202,
|
1777 |
+
"step": 2600
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 4.26,
|
1781 |
+
"learning_rate": 0.0006252220248667851,
|
1782 |
+
"loss": 0.4474,
|
1783 |
+
"step": 2610
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 4.27,
|
1787 |
+
"learning_rate": 0.0006234458259325044,
|
1788 |
+
"loss": 0.4725,
|
1789 |
+
"step": 2620
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 4.29,
|
1793 |
+
"learning_rate": 0.0006216696269982238,
|
1794 |
+
"loss": 0.4319,
|
1795 |
+
"step": 2630
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 4.31,
|
1799 |
+
"learning_rate": 0.0006198934280639432,
|
1800 |
+
"loss": 0.4502,
|
1801 |
+
"step": 2640
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 4.32,
|
1805 |
+
"learning_rate": 0.0006181172291296625,
|
1806 |
+
"loss": 0.4378,
|
1807 |
+
"step": 2650
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 4.34,
|
1811 |
+
"learning_rate": 0.0006163410301953819,
|
1812 |
+
"loss": 0.4333,
|
1813 |
+
"step": 2660
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 4.36,
|
1817 |
+
"learning_rate": 0.0006145648312611012,
|
1818 |
+
"loss": 0.4206,
|
1819 |
+
"step": 2670
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 4.37,
|
1823 |
+
"learning_rate": 0.0006127886323268205,
|
1824 |
+
"loss": 0.4314,
|
1825 |
+
"step": 2680
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 4.39,
|
1829 |
+
"learning_rate": 0.00061101243339254,
|
1830 |
+
"loss": 0.4083,
|
1831 |
+
"step": 2690
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 4.4,
|
1835 |
+
"learning_rate": 0.0006092362344582594,
|
1836 |
+
"loss": 0.4416,
|
1837 |
+
"step": 2700
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 4.4,
|
1841 |
+
"eval_loss": 0.4252881109714508,
|
1842 |
+
"eval_runtime": 13.1357,
|
1843 |
+
"eval_samples_per_second": 89.146,
|
1844 |
+
"eval_steps_per_second": 11.191,
|
1845 |
+
"step": 2700
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 4.42,
|
1849 |
+
"learning_rate": 0.0006074600355239787,
|
1850 |
+
"loss": 0.452,
|
1851 |
+
"step": 2710
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 4.44,
|
1855 |
+
"learning_rate": 0.0006056838365896981,
|
1856 |
+
"loss": 0.4075,
|
1857 |
+
"step": 2720
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 4.45,
|
1861 |
+
"learning_rate": 0.0006039076376554175,
|
1862 |
+
"loss": 0.466,
|
1863 |
+
"step": 2730
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 4.47,
|
1867 |
+
"learning_rate": 0.0006021314387211368,
|
1868 |
+
"loss": 0.4219,
|
1869 |
+
"step": 2740
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 4.49,
|
1873 |
+
"learning_rate": 0.0006003552397868562,
|
1874 |
+
"loss": 0.4391,
|
1875 |
+
"step": 2750
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 4.5,
|
1879 |
+
"learning_rate": 0.0005985790408525756,
|
1880 |
+
"loss": 0.4952,
|
1881 |
+
"step": 2760
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 4.52,
|
1885 |
+
"learning_rate": 0.0005968028419182949,
|
1886 |
+
"loss": 0.4594,
|
1887 |
+
"step": 2770
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 4.54,
|
1891 |
+
"learning_rate": 0.0005950266429840142,
|
1892 |
+
"loss": 0.4501,
|
1893 |
+
"step": 2780
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 4.55,
|
1897 |
+
"learning_rate": 0.0005932504440497336,
|
1898 |
+
"loss": 0.4474,
|
1899 |
+
"step": 2790
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 4.57,
|
1903 |
+
"learning_rate": 0.0005914742451154529,
|
1904 |
+
"loss": 0.4335,
|
1905 |
+
"step": 2800
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 4.57,
|
1909 |
+
"eval_loss": 0.43218302726745605,
|
1910 |
+
"eval_runtime": 12.9197,
|
1911 |
+
"eval_samples_per_second": 90.637,
|
1912 |
+
"eval_steps_per_second": 11.378,
|
1913 |
+
"step": 2800
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 4.58,
|
1917 |
+
"learning_rate": 0.0005896980461811723,
|
1918 |
+
"loss": 0.4498,
|
1919 |
+
"step": 2810
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 4.6,
|
1923 |
+
"learning_rate": 0.0005879218472468917,
|
1924 |
+
"loss": 0.4228,
|
1925 |
+
"step": 2820
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 4.62,
|
1929 |
+
"learning_rate": 0.0005861456483126111,
|
1930 |
+
"loss": 0.4399,
|
1931 |
+
"step": 2830
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 4.63,
|
1935 |
+
"learning_rate": 0.0005843694493783304,
|
1936 |
+
"loss": 0.4561,
|
1937 |
+
"step": 2840
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 4.65,
|
1941 |
+
"learning_rate": 0.0005825932504440498,
|
1942 |
+
"loss": 0.4394,
|
1943 |
+
"step": 2850
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 4.67,
|
1947 |
+
"learning_rate": 0.0005808170515097692,
|
1948 |
+
"loss": 0.4641,
|
1949 |
+
"step": 2860
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 4.68,
|
1953 |
+
"learning_rate": 0.0005790408525754885,
|
1954 |
+
"loss": 0.4162,
|
1955 |
+
"step": 2870
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 4.7,
|
1959 |
+
"learning_rate": 0.0005772646536412079,
|
1960 |
+
"loss": 0.4456,
|
1961 |
+
"step": 2880
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 4.71,
|
1965 |
+
"learning_rate": 0.0005754884547069273,
|
1966 |
+
"loss": 0.4588,
|
1967 |
+
"step": 2890
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 4.73,
|
1971 |
+
"learning_rate": 0.0005737122557726465,
|
1972 |
+
"loss": 0.4316,
|
1973 |
+
"step": 2900
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 4.73,
|
1977 |
+
"eval_loss": 0.428786039352417,
|
1978 |
+
"eval_runtime": 12.9621,
|
1979 |
+
"eval_samples_per_second": 90.341,
|
1980 |
+
"eval_steps_per_second": 11.341,
|
1981 |
+
"step": 2900
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 4.75,
|
1985 |
+
"learning_rate": 0.0005719360568383659,
|
1986 |
+
"loss": 0.4255,
|
1987 |
+
"step": 2910
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 4.76,
|
1991 |
+
"learning_rate": 0.0005701598579040853,
|
1992 |
+
"loss": 0.4353,
|
1993 |
+
"step": 2920
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 4.78,
|
1997 |
+
"learning_rate": 0.0005683836589698046,
|
1998 |
+
"loss": 0.4517,
|
1999 |
+
"step": 2930
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 4.8,
|
2003 |
+
"learning_rate": 0.000566607460035524,
|
2004 |
+
"loss": 0.4747,
|
2005 |
+
"step": 2940
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 4.81,
|
2009 |
+
"learning_rate": 0.0005648312611012434,
|
2010 |
+
"loss": 0.4213,
|
2011 |
+
"step": 2950
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 4.83,
|
2015 |
+
"learning_rate": 0.0005630550621669627,
|
2016 |
+
"loss": 0.437,
|
2017 |
+
"step": 2960
|
2018 |
+
},
|
2019 |
+
{
|
2020 |
+
"epoch": 4.85,
|
2021 |
+
"learning_rate": 0.0005612788632326821,
|
2022 |
+
"loss": 0.4278,
|
2023 |
+
"step": 2970
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 4.86,
|
2027 |
+
"learning_rate": 0.0005595026642984015,
|
2028 |
+
"loss": 0.428,
|
2029 |
+
"step": 2980
|
2030 |
+
},
|
2031 |
+
{
|
2032 |
+
"epoch": 4.88,
|
2033 |
+
"learning_rate": 0.0005577264653641208,
|
2034 |
+
"loss": 0.4256,
|
2035 |
+
"step": 2990
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 4.89,
|
2039 |
+
"learning_rate": 0.0005559502664298401,
|
2040 |
+
"loss": 0.4509,
|
2041 |
+
"step": 3000
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 4.89,
|
2045 |
+
"eval_loss": 0.4271390736103058,
|
2046 |
+
"eval_runtime": 12.8651,
|
2047 |
+
"eval_samples_per_second": 91.022,
|
2048 |
+
"eval_steps_per_second": 11.426,
|
2049 |
+
"step": 3000
|
2050 |
}
|
2051 |
],
|
2052 |
"logging_steps": 10,
|
2053 |
"max_steps": 6130,
|
2054 |
"num_train_epochs": 10,
|
2055 |
"save_steps": 500,
|
2056 |
+
"total_flos": 5664599237689344.0,
|
2057 |
"trial_name": null,
|
2058 |
"trial_params": null
|
2059 |
}
|