somaia02 commited on
Commit
0c1e596
·
1 Parent(s): e3ad7c8

Training in progress, step 3000, checkpoint

Browse files
last-checkpoint/adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa4cf5ab1fb087d029d4381bb5e28a055d9c817a87979d4b736175862d080f9b
3
  size 5323528
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9f1330624d49e1cfa068a1cfd37e35fba53b8c452104e1861364c4b2bcc193
3
  size 5323528
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6572beb7bcdb366917f4d9b45d34f2485f10958107a6631df832abba4e4d9c9c
3
  size 10707706
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e1273154004834ff66e75e29f96e8a925d89006ab79c55eac7eeca115990223
3
  size 10707706
last-checkpoint/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ff46ad6a9496f04d82a8799741e7a0a0edd57f04423aee3b129229a16b468b4
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:635c549447e6d040590768c59571f091ceb0002258d8b337cb9e12c5e9806440
3
  size 14244
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a929be8c5a8f87235cd3c7ec1fa0db3faf4d300da6627139836df2b8a53bd9f3
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66074cbfdf1af5e0486634010580a05d2b8863ee9a8c7ccf5e54b33878144bd6
3
  size 1064
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "best_metric": 0.4399421811103821,
3
- "best_model_checkpoint": "bart_lora_outputs\\checkpoint-2500",
4
- "epoch": 4.078303425774878,
5
  "eval_steps": 100,
6
- "global_step": 2500,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1707,13 +1707,353 @@
1707
  "eval_samples_per_second": 89.035,
1708
  "eval_steps_per_second": 11.177,
1709
  "step": 2500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710
  }
1711
  ],
1712
  "logging_steps": 10,
1713
  "max_steps": 6130,
1714
  "num_train_epochs": 10,
1715
  "save_steps": 500,
1716
- "total_flos": 4719092173406208.0,
1717
  "trial_name": null,
1718
  "trial_params": null
1719
  }
 
1
  {
2
+ "best_metric": 0.4271390736103058,
3
+ "best_model_checkpoint": "bart_lora_outputs\\checkpoint-3000",
4
+ "epoch": 4.893964110929853,
5
  "eval_steps": 100,
6
+ "global_step": 3000,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1707
  "eval_samples_per_second": 89.035,
1708
  "eval_steps_per_second": 11.177,
1709
  "step": 2500
1710
+ },
1711
+ {
1712
+ "epoch": 4.09,
1713
+ "learning_rate": 0.0006429840142095915,
1714
+ "loss": 0.4375,
1715
+ "step": 2510
1716
+ },
1717
+ {
1718
+ "epoch": 4.11,
1719
+ "learning_rate": 0.0006412078152753108,
1720
+ "loss": 0.4485,
1721
+ "step": 2520
1722
+ },
1723
+ {
1724
+ "epoch": 4.13,
1725
+ "learning_rate": 0.0006394316163410302,
1726
+ "loss": 0.4633,
1727
+ "step": 2530
1728
+ },
1729
+ {
1730
+ "epoch": 4.14,
1731
+ "learning_rate": 0.0006376554174067496,
1732
+ "loss": 0.4457,
1733
+ "step": 2540
1734
+ },
1735
+ {
1736
+ "epoch": 4.16,
1737
+ "learning_rate": 0.0006358792184724689,
1738
+ "loss": 0.4504,
1739
+ "step": 2550
1740
+ },
1741
+ {
1742
+ "epoch": 4.18,
1743
+ "learning_rate": 0.0006341030195381882,
1744
+ "loss": 0.4719,
1745
+ "step": 2560
1746
+ },
1747
+ {
1748
+ "epoch": 4.19,
1749
+ "learning_rate": 0.0006323268206039076,
1750
+ "loss": 0.4223,
1751
+ "step": 2570
1752
+ },
1753
+ {
1754
+ "epoch": 4.21,
1755
+ "learning_rate": 0.0006305506216696269,
1756
+ "loss": 0.4481,
1757
+ "step": 2580
1758
+ },
1759
+ {
1760
+ "epoch": 4.23,
1761
+ "learning_rate": 0.0006287744227353463,
1762
+ "loss": 0.4371,
1763
+ "step": 2590
1764
+ },
1765
+ {
1766
+ "epoch": 4.24,
1767
+ "learning_rate": 0.0006269982238010657,
1768
+ "loss": 0.4284,
1769
+ "step": 2600
1770
+ },
1771
+ {
1772
+ "epoch": 4.24,
1773
+ "eval_loss": 0.44260162115097046,
1774
+ "eval_runtime": 13.1231,
1775
+ "eval_samples_per_second": 89.232,
1776
+ "eval_steps_per_second": 11.202,
1777
+ "step": 2600
1778
+ },
1779
+ {
1780
+ "epoch": 4.26,
1781
+ "learning_rate": 0.0006252220248667851,
1782
+ "loss": 0.4474,
1783
+ "step": 2610
1784
+ },
1785
+ {
1786
+ "epoch": 4.27,
1787
+ "learning_rate": 0.0006234458259325044,
1788
+ "loss": 0.4725,
1789
+ "step": 2620
1790
+ },
1791
+ {
1792
+ "epoch": 4.29,
1793
+ "learning_rate": 0.0006216696269982238,
1794
+ "loss": 0.4319,
1795
+ "step": 2630
1796
+ },
1797
+ {
1798
+ "epoch": 4.31,
1799
+ "learning_rate": 0.0006198934280639432,
1800
+ "loss": 0.4502,
1801
+ "step": 2640
1802
+ },
1803
+ {
1804
+ "epoch": 4.32,
1805
+ "learning_rate": 0.0006181172291296625,
1806
+ "loss": 0.4378,
1807
+ "step": 2650
1808
+ },
1809
+ {
1810
+ "epoch": 4.34,
1811
+ "learning_rate": 0.0006163410301953819,
1812
+ "loss": 0.4333,
1813
+ "step": 2660
1814
+ },
1815
+ {
1816
+ "epoch": 4.36,
1817
+ "learning_rate": 0.0006145648312611012,
1818
+ "loss": 0.4206,
1819
+ "step": 2670
1820
+ },
1821
+ {
1822
+ "epoch": 4.37,
1823
+ "learning_rate": 0.0006127886323268205,
1824
+ "loss": 0.4314,
1825
+ "step": 2680
1826
+ },
1827
+ {
1828
+ "epoch": 4.39,
1829
+ "learning_rate": 0.00061101243339254,
1830
+ "loss": 0.4083,
1831
+ "step": 2690
1832
+ },
1833
+ {
1834
+ "epoch": 4.4,
1835
+ "learning_rate": 0.0006092362344582594,
1836
+ "loss": 0.4416,
1837
+ "step": 2700
1838
+ },
1839
+ {
1840
+ "epoch": 4.4,
1841
+ "eval_loss": 0.4252881109714508,
1842
+ "eval_runtime": 13.1357,
1843
+ "eval_samples_per_second": 89.146,
1844
+ "eval_steps_per_second": 11.191,
1845
+ "step": 2700
1846
+ },
1847
+ {
1848
+ "epoch": 4.42,
1849
+ "learning_rate": 0.0006074600355239787,
1850
+ "loss": 0.452,
1851
+ "step": 2710
1852
+ },
1853
+ {
1854
+ "epoch": 4.44,
1855
+ "learning_rate": 0.0006056838365896981,
1856
+ "loss": 0.4075,
1857
+ "step": 2720
1858
+ },
1859
+ {
1860
+ "epoch": 4.45,
1861
+ "learning_rate": 0.0006039076376554175,
1862
+ "loss": 0.466,
1863
+ "step": 2730
1864
+ },
1865
+ {
1866
+ "epoch": 4.47,
1867
+ "learning_rate": 0.0006021314387211368,
1868
+ "loss": 0.4219,
1869
+ "step": 2740
1870
+ },
1871
+ {
1872
+ "epoch": 4.49,
1873
+ "learning_rate": 0.0006003552397868562,
1874
+ "loss": 0.4391,
1875
+ "step": 2750
1876
+ },
1877
+ {
1878
+ "epoch": 4.5,
1879
+ "learning_rate": 0.0005985790408525756,
1880
+ "loss": 0.4952,
1881
+ "step": 2760
1882
+ },
1883
+ {
1884
+ "epoch": 4.52,
1885
+ "learning_rate": 0.0005968028419182949,
1886
+ "loss": 0.4594,
1887
+ "step": 2770
1888
+ },
1889
+ {
1890
+ "epoch": 4.54,
1891
+ "learning_rate": 0.0005950266429840142,
1892
+ "loss": 0.4501,
1893
+ "step": 2780
1894
+ },
1895
+ {
1896
+ "epoch": 4.55,
1897
+ "learning_rate": 0.0005932504440497336,
1898
+ "loss": 0.4474,
1899
+ "step": 2790
1900
+ },
1901
+ {
1902
+ "epoch": 4.57,
1903
+ "learning_rate": 0.0005914742451154529,
1904
+ "loss": 0.4335,
1905
+ "step": 2800
1906
+ },
1907
+ {
1908
+ "epoch": 4.57,
1909
+ "eval_loss": 0.43218302726745605,
1910
+ "eval_runtime": 12.9197,
1911
+ "eval_samples_per_second": 90.637,
1912
+ "eval_steps_per_second": 11.378,
1913
+ "step": 2800
1914
+ },
1915
+ {
1916
+ "epoch": 4.58,
1917
+ "learning_rate": 0.0005896980461811723,
1918
+ "loss": 0.4498,
1919
+ "step": 2810
1920
+ },
1921
+ {
1922
+ "epoch": 4.6,
1923
+ "learning_rate": 0.0005879218472468917,
1924
+ "loss": 0.4228,
1925
+ "step": 2820
1926
+ },
1927
+ {
1928
+ "epoch": 4.62,
1929
+ "learning_rate": 0.0005861456483126111,
1930
+ "loss": 0.4399,
1931
+ "step": 2830
1932
+ },
1933
+ {
1934
+ "epoch": 4.63,
1935
+ "learning_rate": 0.0005843694493783304,
1936
+ "loss": 0.4561,
1937
+ "step": 2840
1938
+ },
1939
+ {
1940
+ "epoch": 4.65,
1941
+ "learning_rate": 0.0005825932504440498,
1942
+ "loss": 0.4394,
1943
+ "step": 2850
1944
+ },
1945
+ {
1946
+ "epoch": 4.67,
1947
+ "learning_rate": 0.0005808170515097692,
1948
+ "loss": 0.4641,
1949
+ "step": 2860
1950
+ },
1951
+ {
1952
+ "epoch": 4.68,
1953
+ "learning_rate": 0.0005790408525754885,
1954
+ "loss": 0.4162,
1955
+ "step": 2870
1956
+ },
1957
+ {
1958
+ "epoch": 4.7,
1959
+ "learning_rate": 0.0005772646536412079,
1960
+ "loss": 0.4456,
1961
+ "step": 2880
1962
+ },
1963
+ {
1964
+ "epoch": 4.71,
1965
+ "learning_rate": 0.0005754884547069273,
1966
+ "loss": 0.4588,
1967
+ "step": 2890
1968
+ },
1969
+ {
1970
+ "epoch": 4.73,
1971
+ "learning_rate": 0.0005737122557726465,
1972
+ "loss": 0.4316,
1973
+ "step": 2900
1974
+ },
1975
+ {
1976
+ "epoch": 4.73,
1977
+ "eval_loss": 0.428786039352417,
1978
+ "eval_runtime": 12.9621,
1979
+ "eval_samples_per_second": 90.341,
1980
+ "eval_steps_per_second": 11.341,
1981
+ "step": 2900
1982
+ },
1983
+ {
1984
+ "epoch": 4.75,
1985
+ "learning_rate": 0.0005719360568383659,
1986
+ "loss": 0.4255,
1987
+ "step": 2910
1988
+ },
1989
+ {
1990
+ "epoch": 4.76,
1991
+ "learning_rate": 0.0005701598579040853,
1992
+ "loss": 0.4353,
1993
+ "step": 2920
1994
+ },
1995
+ {
1996
+ "epoch": 4.78,
1997
+ "learning_rate": 0.0005683836589698046,
1998
+ "loss": 0.4517,
1999
+ "step": 2930
2000
+ },
2001
+ {
2002
+ "epoch": 4.8,
2003
+ "learning_rate": 0.000566607460035524,
2004
+ "loss": 0.4747,
2005
+ "step": 2940
2006
+ },
2007
+ {
2008
+ "epoch": 4.81,
2009
+ "learning_rate": 0.0005648312611012434,
2010
+ "loss": 0.4213,
2011
+ "step": 2950
2012
+ },
2013
+ {
2014
+ "epoch": 4.83,
2015
+ "learning_rate": 0.0005630550621669627,
2016
+ "loss": 0.437,
2017
+ "step": 2960
2018
+ },
2019
+ {
2020
+ "epoch": 4.85,
2021
+ "learning_rate": 0.0005612788632326821,
2022
+ "loss": 0.4278,
2023
+ "step": 2970
2024
+ },
2025
+ {
2026
+ "epoch": 4.86,
2027
+ "learning_rate": 0.0005595026642984015,
2028
+ "loss": 0.428,
2029
+ "step": 2980
2030
+ },
2031
+ {
2032
+ "epoch": 4.88,
2033
+ "learning_rate": 0.0005577264653641208,
2034
+ "loss": 0.4256,
2035
+ "step": 2990
2036
+ },
2037
+ {
2038
+ "epoch": 4.89,
2039
+ "learning_rate": 0.0005559502664298401,
2040
+ "loss": 0.4509,
2041
+ "step": 3000
2042
+ },
2043
+ {
2044
+ "epoch": 4.89,
2045
+ "eval_loss": 0.4271390736103058,
2046
+ "eval_runtime": 12.8651,
2047
+ "eval_samples_per_second": 91.022,
2048
+ "eval_steps_per_second": 11.426,
2049
+ "step": 3000
2050
  }
2051
  ],
2052
  "logging_steps": 10,
2053
  "max_steps": 6130,
2054
  "num_train_epochs": 10,
2055
  "save_steps": 500,
2056
+ "total_flos": 5664599237689344.0,
2057
  "trial_name": null,
2058
  "trial_params": null
2059
  }