import os import pandas as pd import numpy as np from datetime import datetime, timedelta from binance.client import Client from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report import ta # Connect to Binance client = Client() # Settings DATA_FILE = "btc_data_4h_full.csv" symbol = "BTCUSDT" interval = Client.KLINE_INTERVAL_4HOUR # Load or download data if os.path.exists(DATA_FILE): print("Loading existing data...") df = pd.read_csv(DATA_FILE, index_col=0, parse_dates=True) last_timestamp = df.index[-1] start_time = last_timestamp + timedelta(hours=4) start_str = start_time.strftime("%d %B %Y %H:%M:%S") print(f"Downloading new data from {start_str}...") new_klines = client.get_historical_klines(symbol, interval, start_str) if new_klines: new_df = pd.DataFrame(new_klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore']) new_df = new_df[['timestamp', 'open', 'high', 'low', 'close', 'volume']] new_df[['open', 'high', 'low', 'close', 'volume']] = new_df[['open', 'high', 'low', 'close', 'volume']].astype(float) new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms') new_df = new_df.set_index('timestamp') df = pd.concat([df, new_df]) df = df[~df.index.duplicated(keep='first')] df.to_csv(DATA_FILE) else: print("Downloading all data from scratch...") klinesT = client.get_historical_klines(symbol, interval, "01 December 2021") df = pd.DataFrame(klinesT, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore']) df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']] df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float) df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms') df = df.set_index('timestamp') df.to_csv(DATA_FILE) # Feature Engineering - Maximum Indicators # (RSI, MACD, EMAs, SMAs, BB, ATR, ADX, Stochastic, Williams %R, CCI, Momentum) # RSI (Relative Strength Index) df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi() # MACD (Moving Average Convergence Divergence) df['macd'] = ta.trend.MACD(df['close']).macd() # EMA (Exponential Moving Averages) df['ema_10'] = df['close'].ewm(span=10, adjust=False).mean() df['ema_20'] = df['close'].ewm(span=20, adjust=False).mean() df['ema_50'] = df['close'].ewm(span=50, adjust=False).mean() df['ema_100'] = df['close'].ewm(span=100, adjust=False).mean() # SMA (Simple Moving Averages) df['sma_10'] = df['close'].rolling(window=10).mean() df['sma_20'] = df['close'].rolling(window=20).mean() df['sma_50'] = df['close'].rolling(window=50).mean() df['sma_100'] = df['close'].rolling(window=100).mean() # Bollinger Bands bb_indicator = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2) df['bb_bbm'] = bb_indicator.bollinger_mavg() df['bb_bbh'] = bb_indicator.bollinger_hband() df['bb_bbl'] = bb_indicator.bollinger_lband() df['bb_width'] = (df['bb_bbh'] - df['bb_bbl']) / df['bb_bbm'] # Average True Range (ATR) df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range() # ADX - Average Directional Index (Trend strength) df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx() # Stochastic Oscillator stoch = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14) df['stoch_k'] = stoch.stoch() df['stoch_d'] = stoch.stoch_signal() # Williams %R df['williams_r'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r() # CCI (Commodity Channel Index) df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci() # Momentum (manual calculation) df['momentum'] = df['close'] - df['close'].shift(10) # Simple momentum calculation # Ichimoku Cloud Indicators ichimoku = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52) df['ichimoku_tenkan_sen'] = ichimoku.ichimoku_conversion_line() df['ichimoku_kijun_sen'] = ichimoku.ichimoku_base_line() df['ichimoku_senkou_span_a'] = ichimoku.ichimoku_a() df['ichimoku_senkou_span_b'] = ichimoku.ichimoku_b() df['ichimoku_chikou_span'] = df['close'].shift(-26) # Create Uptrend/Downtrend labels based on cloud (1 = Uptrend, 0 = Downtrend, -1 = Neutral) def ichimoku_trend_label(row): if row['close'] > row['ichimoku_senkou_span_a'] and row['close'] > row['ichimoku_senkou_span_b']: return 1 # Uptrend elif row['close'] < row['ichimoku_senkou_span_a'] and row['close'] < row['ichimoku_senkou_span_b']: return 0 # Downtrend else: return -1 # Neutral # Apply function to create 'cloud_trend' labels df['cloud_trend'] = df.apply(ichimoku_trend_label, axis=1) # Drop rows with NaN values df = df.dropna() # Features and Target features = df.drop(columns=['open', 'high', 'low', 'close', 'volume', 'cloud_trend']).columns X = df[features] y = df['cloud_trend'] # Now predicting cloud trend: up, down, or neutral # Train/Test Split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) # Train Random Forest (with class balancing) model = RandomForestClassifier(n_estimators=200, class_weight="balanced", random_state=42) model.fit(X_train, y_train) # Evaluate y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # Predict latest movement latest_features = X.iloc[-1].values.reshape(1, -1) predicted_trend = model.predict(latest_features) trend_label = predicted_trend[0] # Print trend prediction if trend_label == 1: print("Predicted next trend: Uptrend") elif trend_label == 0: print("Predicted next trend: Downtrend") else: print("Predicted next trend: Neutral (inside the cloud)")