Update MLCryptoForecasterAllAssetsTPSL.py
Browse files
MLCryptoForecasterAllAssetsTPSL.py
CHANGED
|
@@ -8,117 +8,122 @@ from sklearn.ensemble import RandomForestClassifier
|
|
| 8 |
from sklearn.metrics import classification_report
|
| 9 |
import ta
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
client = Client()
|
| 13 |
|
| 14 |
# Settings
|
| 15 |
interval = Client.KLINE_INTERVAL_4HOUR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
symbols = [s['symbol'] for s in client.get_exchange_info()['symbols']
|
| 17 |
if s['status']=='TRADING' and s['quoteAsset']=='USDT']
|
| 18 |
|
| 19 |
-
def
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Load or download data
|
|
|
|
| 22 |
if os.path.exists(data_file):
|
| 23 |
df = pd.read_csv(data_file, index_col=0, parse_dates=True)
|
| 24 |
-
# Normalize volume column name
|
| 25 |
-
if 'volume' in df.columns:
|
| 26 |
-
df.rename(columns={'volume':'vol'}, inplace=True)
|
| 27 |
last_ts = df.index[-1]
|
| 28 |
start = (last_ts + timedelta(hours=4)).strftime("%d %B %Y %H:%M:%S")
|
| 29 |
new = client.get_historical_klines(symbol, interval, start)
|
| 30 |
if new:
|
| 31 |
-
new_df = pd.DataFrame(new, columns=['
|
| 32 |
-
|
| 33 |
-
new_df = new_df[['
|
| 34 |
-
new_df['
|
| 35 |
-
new_df.set_index('
|
| 36 |
df = pd.concat([df, new_df]).drop_duplicates()
|
| 37 |
df.to_csv(data_file)
|
| 38 |
else:
|
| 39 |
-
klines = client.get_historical_klines(symbol, interval, "01
|
| 40 |
-
df = pd.DataFrame(klines, columns=['
|
| 41 |
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore'])
|
| 42 |
-
df = df[['
|
| 43 |
-
df['
|
| 44 |
-
df.set_index('
|
| 45 |
df.to_csv(data_file)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
if 'volume' in df.columns:
|
| 49 |
-
df.rename(columns={'volume':'vol'}, inplace=True)
|
| 50 |
-
|
| 51 |
-
# Feature Engineering
|
| 52 |
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
|
| 53 |
df['macd'] = ta.trend.MACD(df['close']).macd()
|
| 54 |
-
for s in [10,
|
| 55 |
-
|
| 56 |
-
for w in [10, 20, 50, 100]:
|
| 57 |
-
df[f'sma_{w}'] = df['close'].rolling(window=w).mean()
|
| 58 |
bb = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2)
|
| 59 |
df['bbw'] = (bb.bollinger_hband() - bb.bollinger_lband()) / bb.bollinger_mavg()
|
| 60 |
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range()
|
| 61 |
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx()
|
| 62 |
st = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14)
|
| 63 |
-
df['st_k'] = st.stoch()
|
| 64 |
-
df['st_d'] = st.stoch_signal()
|
| 65 |
df['wr'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r()
|
| 66 |
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci()
|
| 67 |
df['mom'] = df['close'] - df['close'].shift(10)
|
| 68 |
ichi = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52)
|
| 69 |
-
df['span_a'] = ichi.ichimoku_a()
|
| 70 |
-
df['span_b'] = ichi.ichimoku_b()
|
| 71 |
df.dropna(inplace=True)
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
df['signal'] = np.select(
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
[1, 0],
|
| 78 |
-
default=-1
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
# Train/
|
| 82 |
-
features = df.
|
| 83 |
X, y = df[features], df['signal']
|
| 84 |
Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, shuffle=False)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
idxs = np.where(signals == side)[0]
|
| 96 |
-
for tp in pgrid:
|
| 97 |
-
for sl in lgrid:
|
| 98 |
-
rets = []
|
| 99 |
-
for i in idxs:
|
| 100 |
-
entry = prices[i]
|
| 101 |
-
for j in range(i+1, min(i+11, len(prices))):
|
| 102 |
-
ret = ((prices[j] - entry) / entry) if side == 1 else ((entry - prices[j]) / entry)
|
| 103 |
-
if ret >= tp or ret <= -sl:
|
| 104 |
-
rets.append(np.sign(ret) * min(abs(ret), max(tp, sl)))
|
| 105 |
-
break
|
| 106 |
-
if rets:
|
| 107 |
-
avg_ret = np.mean(rets)
|
| 108 |
-
if avg_ret > best[2]:
|
| 109 |
-
best = (tp, sl, avg_ret)
|
| 110 |
-
return best
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
up_tp, up_sl, _ = optimize_tp_sl(df,
|
| 116 |
-
dn_tp, dn_sl, _ = optimize_tp_sl(df,
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
for sym in symbols:
|
| 121 |
-
try:
|
| 122 |
-
process_symbol(sym)
|
| 123 |
except Exception as e:
|
| 124 |
-
|
|
|
|
| 8 |
from sklearn.metrics import classification_report
|
| 9 |
import ta
|
| 10 |
|
| 11 |
+
# Function to log results to both console and file
|
| 12 |
+
def log_results(message, filename="predictions_results.txt"):
|
| 13 |
+
print(message)
|
| 14 |
+
with open(filename, "a") as f:
|
| 15 |
+
f.write(message + "\n")
|
| 16 |
+
|
| 17 |
+
# Initialize Binance client
|
| 18 |
client = Client()
|
| 19 |
|
| 20 |
# Settings
|
| 21 |
interval = Client.KLINE_INTERVAL_4HOUR
|
| 22 |
+
result_file = "predictions_results.txt"
|
| 23 |
+
# Initialize result file
|
| 24 |
+
if not os.path.exists(result_file):
|
| 25 |
+
with open(result_file, "w") as f:
|
| 26 |
+
f.write("Asset,Accuracy,Optimal_UP_TP,Optimal_UP_SL,Optimal_DN_TP,Optimal_DN_SL\n")
|
| 27 |
+
|
| 28 |
symbols = [s['symbol'] for s in client.get_exchange_info()['symbols']
|
| 29 |
if s['status']=='TRADING' and s['quoteAsset']=='USDT']
|
| 30 |
|
| 31 |
+
def optimize_tp_sl(df, signals, side, pgrid, lgrid):
|
| 32 |
+
best = (0, 0, -np.inf)
|
| 33 |
+
prices = df['close'].values
|
| 34 |
+
idxs = np.where(signals == side)[0]
|
| 35 |
+
for tp in pgrid:
|
| 36 |
+
for sl in lgrid:
|
| 37 |
+
rets = []
|
| 38 |
+
for i in idxs:
|
| 39 |
+
entry = prices[i]
|
| 40 |
+
for j in range(i+1, min(i+11, len(prices))):
|
| 41 |
+
if side == 1:
|
| 42 |
+
ret = (prices[j] - entry) / entry
|
| 43 |
+
else:
|
| 44 |
+
ret = (entry - prices[j]) / entry
|
| 45 |
+
if ret >= tp or ret <= -sl:
|
| 46 |
+
rets.append(np.sign(ret) * min(abs(ret), max(tp, sl)))
|
| 47 |
+
break
|
| 48 |
+
if rets:
|
| 49 |
+
avg_ret = np.mean(rets)
|
| 50 |
+
if avg_ret > best[2]:
|
| 51 |
+
best = (tp, sl, avg_ret)
|
| 52 |
+
return best
|
| 53 |
+
|
| 54 |
+
for symbol in symbols:
|
| 55 |
+
log_results(f"=== {symbol} ===", result_file)
|
| 56 |
# Load or download data
|
| 57 |
+
data_file = f"{symbol}_data_4h_full.csv"
|
| 58 |
if os.path.exists(data_file):
|
| 59 |
df = pd.read_csv(data_file, index_col=0, parse_dates=True)
|
|
|
|
|
|
|
|
|
|
| 60 |
last_ts = df.index[-1]
|
| 61 |
start = (last_ts + timedelta(hours=4)).strftime("%d %B %Y %H:%M:%S")
|
| 62 |
new = client.get_historical_klines(symbol, interval, start)
|
| 63 |
if new:
|
| 64 |
+
new_df = pd.DataFrame(new, columns=['timestamp','open','high','low','close','volume',
|
| 65 |
+
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore'])
|
| 66 |
+
new_df = new_df[['timestamp','open','high','low','close','volume']].astype(float)
|
| 67 |
+
new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
|
| 68 |
+
new_df.set_index('timestamp', inplace=True)
|
| 69 |
df = pd.concat([df, new_df]).drop_duplicates()
|
| 70 |
df.to_csv(data_file)
|
| 71 |
else:
|
| 72 |
+
klines = client.get_historical_klines(symbol, interval, "01 December 2021")
|
| 73 |
+
df = pd.DataFrame(klines, columns=['timestamp','open','high','low','close','volume',
|
| 74 |
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore'])
|
| 75 |
+
df = df[['timestamp','open','high','low','close','volume']].astype(float)
|
| 76 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
|
| 77 |
+
df.set_index('timestamp', inplace=True)
|
| 78 |
df.to_csv(data_file)
|
| 79 |
|
| 80 |
+
# Indicators
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
|
| 82 |
df['macd'] = ta.trend.MACD(df['close']).macd()
|
| 83 |
+
for s in [10,20,50,100]: df[f'ema_{s}'] = df['close'].ewm(span=s).mean()
|
| 84 |
+
for w in [10,20,50,100]: df[f'sma_{w}'] = df['close'].rolling(window=w).mean()
|
|
|
|
|
|
|
| 85 |
bb = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2)
|
| 86 |
df['bbw'] = (bb.bollinger_hband() - bb.bollinger_lband()) / bb.bollinger_mavg()
|
| 87 |
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range()
|
| 88 |
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx()
|
| 89 |
st = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14)
|
| 90 |
+
df['st_k'] = st.stoch(); df['st_d'] = st.stoch_signal()
|
|
|
|
| 91 |
df['wr'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r()
|
| 92 |
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci()
|
| 93 |
df['mom'] = df['close'] - df['close'].shift(10)
|
| 94 |
ichi = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52)
|
| 95 |
+
df['span_a'] = ichi.ichimoku_a(); df['span_b'] = ichi.ichimoku_b()
|
|
|
|
| 96 |
df.dropna(inplace=True)
|
| 97 |
|
| 98 |
+
# Signal labeling
|
| 99 |
+
df['signal'] = np.select([
|
| 100 |
+
(df['close']>df['span_a'])&(df['close']>df['span_b']),
|
| 101 |
+
(df['close']<df['span_a'])&(df['close']<df['span_b'])], [1,0], default=-1)
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# Train/test
|
| 104 |
+
features = [c for c in df.columns if c not in ['open','high','low','close','volume','signal']]
|
| 105 |
X, y = df[features], df['signal']
|
| 106 |
Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.2, shuffle=False)
|
| 107 |
+
model = RandomForestClassifier(n_estimators=200, class_weight='balanced', random_state=42)
|
| 108 |
+
model.fit(Xtr, ytr)
|
| 109 |
+
ypr = model.predict(Xte)
|
| 110 |
+
report = classification_report(yte, ypr, zero_division=0)
|
| 111 |
+
log_results(f"Classification report for {symbol}:\n{report}", result_file)
|
| 112 |
|
| 113 |
+
# Predict latest trend
|
| 114 |
+
latest = model.predict(X.iloc[-1:].values)[0]
|
| 115 |
+
trend_map = {1:'Uptrend',0:'Downtrend',-1:'Neutral'}
|
| 116 |
+
log_results(f"Predicted next trend for {symbol}: {trend_map[latest]}", result_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
# Optimize TP/SL
|
| 119 |
+
hist_sign = model.predict(X.values)
|
| 120 |
+
pgrid = np.arange(0.01,0.1,0.01); lgrid = np.arange(0.01,0.1,0.01)
|
| 121 |
+
up_tp, up_sl, _ = optimize_tp_sl(df, hist_sign, 1, pgrid, lgrid)
|
| 122 |
+
dn_tp, dn_sl, _ = optimize_tp_sl(df, hist_sign, 0, pgrid, lgrid)
|
| 123 |
+
log_results(f"Optimal UP TP/SL: +{up_tp*100:.1f}% / -{up_sl*100:.1f}%", result_file)
|
| 124 |
+
log_results(f"Optimal DN TP/SL: +{dn_tp*100:.1f}% / -{dn_sl*100:.1f}%", result_file)
|
| 125 |
|
| 126 |
for sym in symbols:
|
| 127 |
+
try: process_symbol(sym)
|
|
|
|
| 128 |
except Exception as e:
|
| 129 |
+
log_results(f"Error processing {sym}: {e}", result_file)
|