|
import os |
|
import pandas as pd |
|
import numpy as np |
|
from datetime import timedelta |
|
from binance.client import Client |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.metrics import classification_report |
|
import ta |
|
|
|
|
|
client = Client() |
|
|
|
|
|
interval = Client.KLINE_INTERVAL_4HOUR |
|
|
|
|
|
exchange_info = client.get_exchange_info() |
|
symbols = [s['symbol'] for s in exchange_info['symbols'] |
|
if s['status'] == 'TRADING' and s['quoteAsset'] == 'USDT'] |
|
|
|
|
|
def process_symbol(symbol): |
|
data_file = f"{symbol}_data_4h_full.csv" |
|
|
|
if os.path.exists(data_file): |
|
df = pd.read_csv(data_file, index_col=0, parse_dates=True) |
|
last_ts = df.index[-1] |
|
start_time = last_ts + timedelta(hours=4) |
|
start_str = start_time.strftime("%d %B %Y %H:%M:%S") |
|
new_klines = client.get_historical_klines(symbol, interval, start_str) |
|
if new_klines: |
|
new_df = pd.DataFrame(new_klines, columns=[ |
|
'timestamp','open','high','low','close','volume', |
|
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore' |
|
]) |
|
new_df = new_df[['timestamp','open','high','low','close','volume']] |
|
new_df[['open','high','low','close','volume']] = new_df[['open','high','low','close','volume']].astype(float) |
|
new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms') |
|
new_df.set_index('timestamp', inplace=True) |
|
df = pd.concat([df, new_df]) |
|
df = df[~df.index.duplicated(keep='first')] |
|
df.to_csv(data_file) |
|
else: |
|
klines = client.get_historical_klines(symbol, interval, "01 December 2021") |
|
df = pd.DataFrame(klines, columns=[ |
|
'timestamp','open','high','low','close','volume', |
|
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore' |
|
]) |
|
df = df[['timestamp','open','high','low','close','volume']] |
|
df[['open','high','low','close','volume']] = df[['open','high','low','close','volume']].astype(float) |
|
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms') |
|
df.set_index('timestamp', inplace=True) |
|
df.to_csv(data_file) |
|
|
|
|
|
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi() |
|
df['macd'] = ta.trend.MACD(df['close']).macd() |
|
for span in [10, 20, 50, 100]: |
|
df[f'ema_{span}'] = df['close'].ewm(span=span, adjust=False).mean() |
|
for window in [10, 20, 50, 100]: |
|
df[f'sma_{window}'] = df['close'].rolling(window=window).mean() |
|
bb = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2) |
|
df['bb_width'] = (bb.bollinger_hband() - bb.bollinger_lband()) / bb.bollinger_mavg() |
|
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range() |
|
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx() |
|
stoch = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14) |
|
df['stoch_k'] = stoch.stoch() |
|
df['stoch_d'] = stoch.stoch_signal() |
|
df['williams_r'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r() |
|
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci() |
|
df['momentum'] = df['close'] - df['close'].shift(10) |
|
ichi = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52) |
|
df['ichimoku_senkou_span_a'] = ichi.ichimoku_a() |
|
df['ichimoku_senkou_span_b'] = ichi.ichimoku_b() |
|
|
|
|
|
conditions = [ |
|
(df['close'] > df['ichimoku_senkou_span_a']) & (df['close'] > df['ichimoku_senkou_span_b']), |
|
(df['close'] < df['ichimoku_senkou_span_a']) & (df['close'] < df['ichimoku_senkou_span_b']) |
|
] |
|
df['cloud_trend'] = np.select(conditions, [1, 0], default=-1) |
|
df.dropna(inplace=True) |
|
|
|
|
|
features = df.drop(columns=['open','high','low','close','volume','cloud_trend']).columns |
|
X, y = df[features], df['cloud_trend'] |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) |
|
model = RandomForestClassifier(n_estimators=200, class_weight='balanced', random_state=42) |
|
model.fit(X_train, y_train) |
|
y_pred = model.predict(X_test) |
|
|
|
print(f"\n=== {symbol} ===") |
|
print(classification_report(y_test, y_pred, zero_division=0)) |
|
|
|
|
|
latest_feat = X.iloc[-1].values.reshape(1, -1) |
|
pred = model.predict(latest_feat)[0] |
|
labels = {1: 'Uptrend', 0: 'Downtrend', -1: 'Neutral'} |
|
print(f"Predicted next trend for {symbol}: {labels[pred]}") |
|
|
|
|
|
for s in symbols: |
|
try: |
|
process_symbol(s) |
|
except Exception as e: |
|
print(f"Error processing {s}: {e}") |
|
|