MLCryptoForecaster / MLCryptoForecasterAllAssets.py
solanaexpert's picture
Create MLCryptoForecasterAllAssets.py
ab89897 verified
import os
import pandas as pd
import numpy as np
from datetime import timedelta
from binance.client import Client
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import ta
# Initialize Binance client (insert API keys if needed)
client = Client()
# Settings
interval = Client.KLINE_INTERVAL_4HOUR
# Retrieve all trading symbols quoted in USDT
exchange_info = client.get_exchange_info()
symbols = [s['symbol'] for s in exchange_info['symbols']
if s['status'] == 'TRADING' and s['quoteAsset'] == 'USDT']
# Function to process a single symbol
def process_symbol(symbol):
data_file = f"{symbol}_data_4h_full.csv"
# Load or download data
if os.path.exists(data_file):
df = pd.read_csv(data_file, index_col=0, parse_dates=True)
last_ts = df.index[-1]
start_time = last_ts + timedelta(hours=4)
start_str = start_time.strftime("%d %B %Y %H:%M:%S")
new_klines = client.get_historical_klines(symbol, interval, start_str)
if new_klines:
new_df = pd.DataFrame(new_klines, columns=[
'timestamp','open','high','low','close','volume',
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore'
])
new_df = new_df[['timestamp','open','high','low','close','volume']]
new_df[['open','high','low','close','volume']] = new_df[['open','high','low','close','volume']].astype(float)
new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
new_df.set_index('timestamp', inplace=True)
df = pd.concat([df, new_df])
df = df[~df.index.duplicated(keep='first')]
df.to_csv(data_file)
else:
klines = client.get_historical_klines(symbol, interval, "01 December 2021")
df = pd.DataFrame(klines, columns=[
'timestamp','open','high','low','close','volume',
'close_time','quote_av','trades','tb_base_av','tb_quote_av','ignore'
])
df = df[['timestamp','open','high','low','close','volume']]
df[['open','high','low','close','volume']] = df[['open','high','low','close','volume']].astype(float)
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
df.set_index('timestamp', inplace=True)
df.to_csv(data_file)
# Feature Engineering
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
df['macd'] = ta.trend.MACD(df['close']).macd()
for span in [10, 20, 50, 100]:
df[f'ema_{span}'] = df['close'].ewm(span=span, adjust=False).mean()
for window in [10, 20, 50, 100]:
df[f'sma_{window}'] = df['close'].rolling(window=window).mean()
bb = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2)
df['bb_width'] = (bb.bollinger_hband() - bb.bollinger_lband()) / bb.bollinger_mavg()
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range()
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx()
stoch = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14)
df['stoch_k'] = stoch.stoch()
df['stoch_d'] = stoch.stoch_signal()
df['williams_r'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r()
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci()
df['momentum'] = df['close'] - df['close'].shift(10)
ichi = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52)
df['ichimoku_senkou_span_a'] = ichi.ichimoku_a()
df['ichimoku_senkou_span_b'] = ichi.ichimoku_b()
# Trend Label
conditions = [
(df['close'] > df['ichimoku_senkou_span_a']) & (df['close'] > df['ichimoku_senkou_span_b']),
(df['close'] < df['ichimoku_senkou_span_a']) & (df['close'] < df['ichimoku_senkou_span_b'])
]
df['cloud_trend'] = np.select(conditions, [1, 0], default=-1)
df.dropna(inplace=True)
# Model Training
features = df.drop(columns=['open','high','low','close','volume','cloud_trend']).columns
X, y = df[features], df['cloud_trend']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
model = RandomForestClassifier(n_estimators=200, class_weight='balanced', random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f"\n=== {symbol} ===")
print(classification_report(y_test, y_pred, zero_division=0))
# Latest prediction
latest_feat = X.iloc[-1].values.reshape(1, -1)
pred = model.predict(latest_feat)[0]
labels = {1: 'Uptrend', 0: 'Downtrend', -1: 'Neutral'}
print(f"Predicted next trend for {symbol}: {labels[pred]}")
# Main loop
for s in symbols:
try:
process_symbol(s)
except Exception as e:
print(f"Error processing {s}: {e}")