File size: 6,132 Bytes
a7068a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from binance.client import Client
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import ta
# Connect to Binance
client = Client()
# Settings
DATA_FILE = "btc_data_4h_full.csv"
symbol = "BTCUSDT"
interval = Client.KLINE_INTERVAL_4HOUR
# Load or download data
if os.path.exists(DATA_FILE):
print("Loading existing data...")
df = pd.read_csv(DATA_FILE, index_col=0, parse_dates=True)
last_timestamp = df.index[-1]
start_time = last_timestamp + timedelta(hours=4)
start_str = start_time.strftime("%d %B %Y %H:%M:%S")
print(f"Downloading new data from {start_str}...")
new_klines = client.get_historical_klines(symbol, interval, start_str)
if new_klines:
new_df = pd.DataFrame(new_klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
new_df = new_df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
new_df[['open', 'high', 'low', 'close', 'volume']] = new_df[['open', 'high', 'low', 'close', 'volume']].astype(float)
new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
new_df = new_df.set_index('timestamp')
df = pd.concat([df, new_df])
df = df[~df.index.duplicated(keep='first')]
df.to_csv(DATA_FILE)
else:
print("Downloading all data from scratch...")
klinesT = client.get_historical_klines(symbol, interval, "01 December 2021")
df = pd.DataFrame(klinesT, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
df = df.set_index('timestamp')
df.to_csv(DATA_FILE)
# Feature Engineering - Maximum Indicators
# (RSI, MACD, EMAs, SMAs, BB, ATR, ADX, Stochastic, Williams %R, CCI, Momentum)
# RSI (Relative Strength Index)
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
# MACD (Moving Average Convergence Divergence)
df['macd'] = ta.trend.MACD(df['close']).macd()
# EMA (Exponential Moving Averages)
df['ema_10'] = df['close'].ewm(span=10, adjust=False).mean()
df['ema_20'] = df['close'].ewm(span=20, adjust=False).mean()
df['ema_50'] = df['close'].ewm(span=50, adjust=False).mean()
df['ema_100'] = df['close'].ewm(span=100, adjust=False).mean()
# SMA (Simple Moving Averages)
df['sma_10'] = df['close'].rolling(window=10).mean()
df['sma_20'] = df['close'].rolling(window=20).mean()
df['sma_50'] = df['close'].rolling(window=50).mean()
df['sma_100'] = df['close'].rolling(window=100).mean()
# Bollinger Bands
bb_indicator = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2)
df['bb_bbm'] = bb_indicator.bollinger_mavg()
df['bb_bbh'] = bb_indicator.bollinger_hband()
df['bb_bbl'] = bb_indicator.bollinger_lband()
df['bb_width'] = (df['bb_bbh'] - df['bb_bbl']) / df['bb_bbm']
# Average True Range (ATR)
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range()
# ADX - Average Directional Index (Trend strength)
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx()
# Stochastic Oscillator
stoch = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14)
df['stoch_k'] = stoch.stoch()
df['stoch_d'] = stoch.stoch_signal()
# Williams %R
df['williams_r'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r()
# CCI (Commodity Channel Index)
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci()
# Momentum (manual calculation)
df['momentum'] = df['close'] - df['close'].shift(10) # Simple momentum calculation
# Ichimoku Cloud Indicators
ichimoku = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52)
df['ichimoku_tenkan_sen'] = ichimoku.ichimoku_conversion_line()
df['ichimoku_kijun_sen'] = ichimoku.ichimoku_base_line()
df['ichimoku_senkou_span_a'] = ichimoku.ichimoku_a()
df['ichimoku_senkou_span_b'] = ichimoku.ichimoku_b()
df['ichimoku_chikou_span'] = df['close'].shift(-26)
# Create Uptrend/Downtrend labels based on cloud (1 = Uptrend, 0 = Downtrend, -1 = Neutral)
def ichimoku_trend_label(row):
if row['close'] > row['ichimoku_senkou_span_a'] and row['close'] > row['ichimoku_senkou_span_b']:
return 1 # Uptrend
elif row['close'] < row['ichimoku_senkou_span_a'] and row['close'] < row['ichimoku_senkou_span_b']:
return 0 # Downtrend
else:
return -1 # Neutral
# Apply function to create 'cloud_trend' labels
df['cloud_trend'] = df.apply(ichimoku_trend_label, axis=1)
# Drop rows with NaN values
df = df.dropna()
# Features and Target
features = df.drop(columns=['open', 'high', 'low', 'close', 'volume', 'cloud_trend']).columns
X = df[features]
y = df['cloud_trend'] # Now predicting cloud trend: up, down, or neutral
# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
# Train Random Forest (with class balancing)
model = RandomForestClassifier(n_estimators=200, class_weight="balanced", random_state=42)
model.fit(X_train, y_train)
# Evaluate
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
# Predict latest movement
latest_features = X.iloc[-1].values.reshape(1, -1)
predicted_trend = model.predict(latest_features)
trend_label = predicted_trend[0]
# Print trend prediction
if trend_label == 1:
print("Predicted next trend: Uptrend")
elif trend_label == 0:
print("Predicted next trend: Downtrend")
else:
print("Predicted next trend: Neutral (inside the cloud)")
|