File size: 6,132 Bytes
a7068a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from binance.client import Client
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import ta

# Connect to Binance
client = Client()

# Settings
DATA_FILE = "btc_data_4h_full.csv"
symbol = "BTCUSDT"
interval = Client.KLINE_INTERVAL_4HOUR

# Load or download data
if os.path.exists(DATA_FILE):
    print("Loading existing data...")
    df = pd.read_csv(DATA_FILE, index_col=0, parse_dates=True)
    last_timestamp = df.index[-1]
    start_time = last_timestamp + timedelta(hours=4)
    start_str = start_time.strftime("%d %B %Y %H:%M:%S")
    
    print(f"Downloading new data from {start_str}...")
    new_klines = client.get_historical_klines(symbol, interval, start_str)
    if new_klines:
        new_df = pd.DataFrame(new_klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
                                                    'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
        new_df = new_df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
        new_df[['open', 'high', 'low', 'close', 'volume']] = new_df[['open', 'high', 'low', 'close', 'volume']].astype(float)
        new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
        new_df = new_df.set_index('timestamp')
        df = pd.concat([df, new_df])
        df = df[~df.index.duplicated(keep='first')]
        df.to_csv(DATA_FILE)
else:
    print("Downloading all data from scratch...")
    klinesT = client.get_historical_klines(symbol, interval, "01 December 2021")
    df = pd.DataFrame(klinesT, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
                                        'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
    df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
    df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
    df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
    df = df.set_index('timestamp')
    df.to_csv(DATA_FILE)

# Feature Engineering - Maximum Indicators
# (RSI, MACD, EMAs, SMAs, BB, ATR, ADX, Stochastic, Williams %R, CCI, Momentum)

# RSI (Relative Strength Index)
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()

# MACD (Moving Average Convergence Divergence)
df['macd'] = ta.trend.MACD(df['close']).macd()

# EMA (Exponential Moving Averages)
df['ema_10'] = df['close'].ewm(span=10, adjust=False).mean()
df['ema_20'] = df['close'].ewm(span=20, adjust=False).mean()
df['ema_50'] = df['close'].ewm(span=50, adjust=False).mean()
df['ema_100'] = df['close'].ewm(span=100, adjust=False).mean()

# SMA (Simple Moving Averages)
df['sma_10'] = df['close'].rolling(window=10).mean()
df['sma_20'] = df['close'].rolling(window=20).mean()
df['sma_50'] = df['close'].rolling(window=50).mean()
df['sma_100'] = df['close'].rolling(window=100).mean()

# Bollinger Bands
bb_indicator = ta.volatility.BollingerBands(df['close'], window=20, window_dev=2)
df['bb_bbm'] = bb_indicator.bollinger_mavg()
df['bb_bbh'] = bb_indicator.bollinger_hband()
df['bb_bbl'] = bb_indicator.bollinger_lband()
df['bb_width'] = (df['bb_bbh'] - df['bb_bbl']) / df['bb_bbm']

# Average True Range (ATR)
df['atr'] = ta.volatility.AverageTrueRange(df['high'], df['low'], df['close'], window=14).average_true_range()

# ADX - Average Directional Index (Trend strength)
df['adx'] = ta.trend.ADXIndicator(df['high'], df['low'], df['close'], window=14).adx()

# Stochastic Oscillator
stoch = ta.momentum.StochasticOscillator(df['high'], df['low'], df['close'], window=14)
df['stoch_k'] = stoch.stoch()
df['stoch_d'] = stoch.stoch_signal()

# Williams %R
df['williams_r'] = ta.momentum.WilliamsRIndicator(df['high'], df['low'], df['close'], lbp=14).williams_r()

# CCI (Commodity Channel Index)
df['cci'] = ta.trend.CCIIndicator(df['high'], df['low'], df['close'], window=20).cci()

# Momentum (manual calculation)
df['momentum'] = df['close'] - df['close'].shift(10)  # Simple momentum calculation

# Ichimoku Cloud Indicators
ichimoku = ta.trend.IchimokuIndicator(df['high'], df['low'], window1=9, window2=26, window3=52)
df['ichimoku_tenkan_sen'] = ichimoku.ichimoku_conversion_line()
df['ichimoku_kijun_sen'] = ichimoku.ichimoku_base_line()
df['ichimoku_senkou_span_a'] = ichimoku.ichimoku_a()
df['ichimoku_senkou_span_b'] = ichimoku.ichimoku_b()
df['ichimoku_chikou_span'] = df['close'].shift(-26)

# Create Uptrend/Downtrend labels based on cloud (1 = Uptrend, 0 = Downtrend, -1 = Neutral)
def ichimoku_trend_label(row):
    if row['close'] > row['ichimoku_senkou_span_a'] and row['close'] > row['ichimoku_senkou_span_b']:
        return 1  # Uptrend
    elif row['close'] < row['ichimoku_senkou_span_a'] and row['close'] < row['ichimoku_senkou_span_b']:
        return 0  # Downtrend
    else:
        return -1  # Neutral

# Apply function to create 'cloud_trend' labels
df['cloud_trend'] = df.apply(ichimoku_trend_label, axis=1)

# Drop rows with NaN values
df = df.dropna()

# Features and Target
features = df.drop(columns=['open', 'high', 'low', 'close', 'volume', 'cloud_trend']).columns
X = df[features]
y = df['cloud_trend']  # Now predicting cloud trend: up, down, or neutral

# Train/Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)

# Train Random Forest (with class balancing)
model = RandomForestClassifier(n_estimators=200, class_weight="balanced", random_state=42)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

# Predict latest movement
latest_features = X.iloc[-1].values.reshape(1, -1)
predicted_trend = model.predict(latest_features)
trend_label = predicted_trend[0]

# Print trend prediction
if trend_label == 1:
    print("Predicted next trend: Uptrend")
elif trend_label == 0:
    print("Predicted next trend: Downtrend")
else:
    print("Predicted next trend: Neutral (inside the cloud)")