File size: 2,298 Bytes
2fae59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from sentence_transformers.models import Transformer
import torch
from transformers.utils.import_utils import is_peft_available


class LayerSpecificTransformer(Transformer):
    def forward(
        self, features: dict[str, torch.Tensor], layer_idx: int = -1, **kwargs
    ) -> dict[str, torch.Tensor]:
        """Returns token_embeddings, cls_token"""
        trans_features = {
            key: value
            for key, value in features.items()
            if key in ["input_ids", "attention_mask", "token_type_ids", "inputs_embeds"]
        }

        output_states = self.auto_model(
            **trans_features, **kwargs, return_dict=True, output_hidden_states=True
        )
        output_tokens = output_states.hidden_states[layer_idx]  # -1: last layer, -2: second from last

        # If the AutoModel is wrapped with a PeftModelForFeatureExtraction, then it may have added virtual tokens
        # We need to extend the attention mask to include these virtual tokens, or the pooling will fail
        if is_peft_available():
            from peft import PeftModelForFeatureExtraction

            if (
                isinstance(self.auto_model, PeftModelForFeatureExtraction)
                and self.auto_model.active_peft_config.is_prompt_learning
            ):
                batch_size = output_tokens.size(0)
                attention_mask = features["attention_mask"]
                prefix_attention_mask = torch.ones(
                    batch_size,
                    self.auto_model.active_peft_config.num_virtual_tokens,
                    device=attention_mask.device,
                )
                features["attention_mask"] = torch.cat(
                    (prefix_attention_mask, attention_mask), dim=1
                )

        features["token_embeddings"] = output_tokens

        if self.auto_model.config.output_hidden_states and len(output_states) > 2:
            all_layer_idx = 2  # I.e. after last_hidden_states and pooler_output
            if (
                len(output_states) < 3
            ):  # Some models only output last_hidden_states and all_hidden_states
                all_layer_idx = 1

            hidden_states = output_states[all_layer_idx]
            features["all_layer_embeddings"] = hidden_states

        return features