sniperfix commited on
Commit
1156cbc
·
verified ·
1 Parent(s): 3b38578

End of training

Browse files
Files changed (2) hide show
  1. README.md +174 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: elyza/Llama-3-ELYZA-JP-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 83c2acf8-f255-4c90-ac05-9d082dc20fe6
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: elyza/Llama-3-ELYZA-JP-8B
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 8a34c82f4fcec0a6_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/8a34c82f4fcec0a6_train_data.json
32
+ type:
33
+ field_instruction: question
34
+ field_output: answer
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 256
43
+ eval_table_size: null
44
+ evals_per_epoch: 4
45
+ flash_attention: false
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 32
50
+ gradient_checkpointing: true
51
+ group_by_length: false
52
+ hub_model_id: sniperfix/83c2acf8-f255-4c90-ac05-9d082dc20fe6
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0002
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 3
61
+ lora_alpha: 64
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 32
66
+ lora_target_linear: true
67
+ lora_target_modules:
68
+ - q_proj
69
+ - k_proj
70
+ - v_proj
71
+ - o_proj
72
+ - gate_proj
73
+ - down_proj
74
+ - up_proj
75
+ lr_scheduler: cosine
76
+ max_grad_norm: 2
77
+ max_steps: 90
78
+ micro_batch_size: 2
79
+ mlflow_experiment_name: /tmp/8a34c82f4fcec0a6_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 3
82
+ optim_args:
83
+ adam_beta1: 0.9
84
+ adam_beta2: 0.95
85
+ adam_epsilon: 1.0e-05
86
+ optimizer: adamw_torch
87
+ output_dir: miner_id_24
88
+ pad_to_sequence_len: true
89
+ resume_from_checkpoint: null
90
+ s2_attention: null
91
+ sample_packing: false
92
+ saves_per_epoch: 4
93
+ sequence_len: 2048
94
+ special_tokens:
95
+ pad_token: <|eot_id|>
96
+ strict: false
97
+ tf32: false
98
+ tokenizer_type: AutoTokenizer
99
+ train_on_inputs: false
100
+ trust_remote_code: true
101
+ val_set_size: 0.05
102
+ wandb_entity: indexjupri-sniper-country
103
+ wandb_mode: online
104
+ wandb_name: 17b9b016-89d5-45c6-b81d-c0c6e8acb440
105
+ wandb_project: Gradients-On-Demand
106
+ wandb_run: your_name
107
+ wandb_runid: 17b9b016-89d5-45c6-b81d-c0c6e8acb440
108
+ warmup_steps: 20
109
+ weight_decay: 0.02
110
+ xformers_attention: false
111
+
112
+ ```
113
+
114
+ </details><br>
115
+
116
+ # 83c2acf8-f255-4c90-ac05-9d082dc20fe6
117
+
118
+ This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset.
119
+ It achieves the following results on the evaluation set:
120
+ - Loss: 0.3653
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 0.0002
140
+ - train_batch_size: 2
141
+ - eval_batch_size: 2
142
+ - seed: 42
143
+ - gradient_accumulation_steps: 32
144
+ - total_train_batch_size: 64
145
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
146
+ - lr_scheduler_type: cosine
147
+ - lr_scheduler_warmup_steps: 20
148
+ - training_steps: 90
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | No log | 0.0014 | 1 | 0.6262 |
155
+ | 0.5672 | 0.0108 | 8 | 0.5123 |
156
+ | 0.4491 | 0.0216 | 16 | 0.4523 |
157
+ | 0.4339 | 0.0325 | 24 | 0.4225 |
158
+ | 0.4056 | 0.0433 | 32 | 0.4043 |
159
+ | 0.39 | 0.0541 | 40 | 0.3920 |
160
+ | 0.3748 | 0.0649 | 48 | 0.3831 |
161
+ | 0.3694 | 0.0758 | 56 | 0.3761 |
162
+ | 0.3612 | 0.0866 | 64 | 0.3714 |
163
+ | 0.3548 | 0.0974 | 72 | 0.3679 |
164
+ | 0.3634 | 0.1082 | 80 | 0.3658 |
165
+ | 0.3592 | 0.1190 | 88 | 0.3653 |
166
+
167
+
168
+ ### Framework versions
169
+
170
+ - PEFT 0.13.2
171
+ - Transformers 4.46.0
172
+ - Pytorch 2.5.0+cu124
173
+ - Datasets 3.0.1
174
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9760100a130f9a117144d92dd1763ce2849540b924480068b969bb1e7eac57
3
+ size 335706186