--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - axolotl - generated_from_trainer datasets: - yahma/alpaca-cleaned model-index: - name: qat-llama-3B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.13.0.dev0` ```yaml base_model: meta-llama/Llama-3.2-3B-Instruct # Automatically upload checkpoint and final model to HF hub_model_id: smohammadi/qat-llama-3B # username/custom_model_name load_in_8bit: false load_in_4bit: false strict: false #liger_rope: true #liger_rms_norm: true #liger_glu_activation: true #liger_layer_norm: true # #liger_fused_linear_cross_entropy: true datasets: - path: yahma/alpaca-cleaned type: alpaca split: train[:95%] output_dir: ./outputs/qat-train_on_inputs/ dataset_prepared_path: ./outputs/ds_prepared_new_token #sample_packing: true sequence_len: 8192 flash_attention: true #flex_attention: true #flex_attn_compile_kwargs: # dynamic: false # mode: max-autotune-no-cudagraphs qat: activation_dtype: int8 weight_dtype: int4 group_size: 32 wandb_project: qat_v2 wandb_entity: wandb_watch: wandb_name: qat-train-on-inputs wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_torch_fused train_on_inputs: true #cosine_constant_lr_ratio: 0 #cosine_min_lr_ratio: 1.0 lr_scheduler: constant learning_rate: 2e-5 save_only_model: true bf16: true resume_from_checkpoint: logging_steps: 1 include_tkps: true evals_per_epoch: 1 saves_per_epoch: 1 #warmup_ratio: 0.1 weight_decay: 0.0 fsdp_config: fsdp_version: 2 fsdp_offload_params: false fsdp_cpu_ram_efficient_loading: False fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_reshard_after_forward: true fsdp_activation_checkpointing: true special_tokens: pad_token: <|finetune_right_pad_id|> ```

# qat-llama-3B This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the yahma/alpaca-cleaned dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 23 - training_steps: 769 ### Training results ### Framework versions - Transformers 4.55.3 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4