---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- yahma/alpaca-cleaned
model-index:
- name: qat-llama-3B
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.13.0.dev0`
```yaml
base_model: meta-llama/Llama-3.2-3B-Instruct
# Automatically upload checkpoint and final model to HF
hub_model_id: smohammadi/qat-llama-3B # username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
#liger_rope: true
#liger_rms_norm: true
#liger_glu_activation: true
#liger_layer_norm: true
#
#liger_fused_linear_cross_entropy: true
datasets:
- path: yahma/alpaca-cleaned
type: alpaca
split: train[:95%]
output_dir: ./outputs/qat-train_on_inputs/
dataset_prepared_path: ./outputs/ds_prepared_new_token
#sample_packing: true
sequence_len: 8192
flash_attention: true
#flex_attention: true
#flex_attn_compile_kwargs:
# dynamic: false
# mode: max-autotune-no-cudagraphs
qat:
activation_dtype: int8
weight_dtype: int4
group_size: 32
wandb_project: qat_v2
wandb_entity:
wandb_watch:
wandb_name: qat-train-on-inputs
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_torch_fused
train_on_inputs: true
#cosine_constant_lr_ratio: 0
#cosine_min_lr_ratio: 1.0
lr_scheduler: constant
learning_rate: 2e-5
save_only_model: true
bf16: true
resume_from_checkpoint:
logging_steps: 1
include_tkps: true
evals_per_epoch: 1
saves_per_epoch: 1
#warmup_ratio: 0.1
weight_decay: 0.0
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_cpu_ram_efficient_loading: False
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_reshard_after_forward: true
fsdp_activation_checkpointing: true
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
# qat-llama-3B
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the yahma/alpaca-cleaned dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 23
- training_steps: 769
### Training results
### Framework versions
- Transformers 4.55.3
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4