import logging class Logger(object): def __init__(self, txt_path): root_logger = logging.getLogger() for handler in root_logger.handlers[:]: root_logger.removeHandler(handler) root_logger.setLevel(logging.WARNING) self.txt_path = txt_path self.logger = logging.getLogger('train') self.formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%y-%m-%d %H:%M:%S') self.logger.setLevel(logging.INFO) def __console(self, level, message): root_logger = logging.getLogger() for handler in root_logger.handlers[:]: root_logger.removeHandler(handler) file_handler = logging.FileHandler(self.txt_path, mode='a') console_handler = logging.StreamHandler() file_handler.setFormatter(self.formatter) console_handler.setFormatter(self.formatter) self.logger.addHandler(file_handler) self.logger.addHandler(console_handler) if level == 'info': self.logger.info(message) elif level == 'debug': self.logger.debug(message) elif level == 'warning': self.logger.warning(message) elif level == 'error': self.logger.error(message) self.logger.removeHandler(file_handler) self.logger.removeHandler(console_handler) file_handler.close() def debug(self, message): self.__console('debug', message) def info(self, message): self.__console('info', message) def warning(self, message): self.__console('warning', message) def error(self, message): self.__console('error', message) def log_metrics(metrics, logger, tensorboard_logger, epoch): def log_single_class(data, tag): logger.info( '{:>15} \t\tI-Auroc:{:.2f} \tI-F1:{:.2f} \tI-AP:{:.2f} \tP-Auroc:{:.2f} \tP-F1:{:.2f} \tP-AP:{:.2f}'. format(tag, data['auroc_im'], data['f1_im'], data['ap_im'], data['auroc_px'], data['f1_px'], data['ap_px']) ) # Adding scalar metrics to TensorBoard for metric_name in ['auroc_im', 'f1_im', 'ap_im', 'auroc_px', 'f1_px', 'ap_px']: tensorboard_logger.add_scalar(f'{tag}-{metric_name}', data[metric_name], epoch) for tag, data in metrics.items(): log_single_class(data, tag)