Commit
·
1631de4
1
Parent(s):
e7f4ccb
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.83 +/- 0.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8573c73a145e484a3d128413f4c146bbfca11954de5dffefbb6a882ca377152
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f223d3f0af0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f223d3e4f60>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1677498054578125956,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeh/bPkFJmr/NyJQ/9rqSv8WyL73cfna/g/6gv6ovVb9xT6C/AodVv66ti78M15E/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+juUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]]",
|
60 |
+
"desired_goal": "[[ 0.42797452 -1.2053605 1.162378 ]\n [-1.1463306 -0.0428951 -0.9628732 ]\n [-1.2577671 -0.83275855 -1.2524244 ]\n [-0.8340913 -1.0912378 1.1393752 ]]",
|
61 |
+
"observation": "[[ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPHETPvgfiL3GqYU+wcqwvUQ/OD0/aDw82bmlPYKf8D3wTLw9d7jmPdcifztBMDo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.14398664 -0.06646723 0.2610609 ]\n [-0.08632422 0.04498221 0.01149946]\n [ 0.08092088 0.11749174 0.09194362]\n [ 0.11265653 0.00389307 0.1818247 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP1bw2xDj7r+UhpRSlIwBbJRLMowBdJRHQKfFUnNxEOR1fZQoaAZoCWgPQwhEFmniHeDsv5SGlFKUaBVLMmgWR0CnxQ9Vea8ZdX2UKGgGaAloD0MIL204LA3887+UhpRSlGgVSzJoFkdAp8TRrcj7h3V9lChoBmgJaA9DCL+AXrhzIfy/lIaUUpRoFUsyaBZHQKfEkPeYUnJ1fZQoaAZoCWgPQwhU5uYb0T35v5SGlFKUaBVLMmgWR0CnxqUrTYukdX2UKGgGaAloD0MIpaSHodWJ9b+UhpRSlGgVSzJoFkdAp8ZiJTER8XV9lChoBmgJaA9DCET3rGu0fADAlIaUUpRoFUsyaBZHQKfGJHd43WF1fZQoaAZoCWgPQwgEVg4tst31v5SGlFKUaBVLMmgWR0CnxeSl3yI6dX2UKGgGaAloD0MIf/lkxXB18r+UhpRSlGgVSzJoFkdAp8fCPjn3c3V9lChoBmgJaA9DCHYZ/tMNVPi/lIaUUpRoFUsyaBZHQKfHgEmICU51fZQoaAZoCWgPQwgLDcSymeMDwJSGlFKUaBVLMmgWR0Cnx0OIRAbAdX2UKGgGaAloD0MILexph7/m9L+UhpRSlGgVSzJoFkdAp8cDG96C2HV9lChoBmgJaA9DCEZ8J2a92PO/lIaUUpRoFUsyaBZHQKfI2oJAt4B1fZQoaAZoCWgPQwiHF0Skpl37v5SGlFKUaBVLMmgWR0CnyJeIuXeFdX2UKGgGaAloD0MIjQqcbAP3/L+UhpRSlGgVSzJoFkdAp8hZxvNu+HV9lChoBmgJaA9DCPryAuyjE/W/lIaUUpRoFUsyaBZHQKfIGezUqhF1fZQoaAZoCWgPQwiUvhBy3v/sv5SGlFKUaBVLMmgWR0CnyhONPxhEdX2UKGgGaAloD0MI5j+k374O97+UhpRSlGgVSzJoFkdAp8nQYYR/VnV9lChoBmgJaA9DCDWYhuEjovq/lIaUUpRoFUsyaBZHQKfJkpcX3xp1fZQoaAZoCWgPQwgiwVQzaynsv5SGlFKUaBVLMmgWR0CnyVIC2c8UdX2UKGgGaAloD0MIPWU1XU/07L+UhpRSlGgVSzJoFkdAp8tIXXRPXXV9lChoBmgJaA9DCIyDS8ecp/m/lIaUUpRoFUsyaBZHQKfLBWT5ftx1fZQoaAZoCWgPQwhqaW6FsBrhv5SGlFKUaBVLMmgWR0Cnyse2uxKQdX2UKGgGaAloD0MI41Eq4Qm947+UhpRSlGgVSzJoFkdAp8qHFR51NnV9lChoBmgJaA9DCIjZy7bTlvW/lIaUUpRoFUsyaBZHQKfM7PpIMBp1fZQoaAZoCWgPQwiIn/8evHbov5SGlFKUaBVLMmgWR0CnzKrfcer/dX2UKGgGaAloD0MIxLEubqOB5L+UhpRSlGgVSzJoFkdAp8xt65XlsHV9lChoBmgJaA9DCJV9VwT/2+W/lIaUUpRoFUsyaBZHQKfMLiBGx2V1fZQoaAZoCWgPQwgPDYtR19rxv5SGlFKUaBVLMmgWR0Cnzw1afSQYdX2UKGgGaAloD0MITIi5pGo78r+UhpRSlGgVSzJoFkdAp87LHIZIhHV9lChoBmgJaA9DCEIj2Lj+Xeq/lIaUUpRoFUsyaBZHQKfOjlz2exx1fZQoaAZoCWgPQwgNpmH4iFjxv5SGlFKUaBVLMmgWR0Cnzk4Vh1DCdX2UKGgGaAloD0MIiGcJMgJq+b+UhpRSlGgVSzJoFkdAp9FBy0a6z3V9lChoBmgJaA9DCIVcqWdByADAlIaUUpRoFUsyaBZHQKfQ/9jPOY91fZQoaAZoCWgPQwjX2vtUFVr3v5SGlFKUaBVLMmgWR0Cn0MSaEzwddX2UKGgGaAloD0MIj2/vGvSl77+UhpRSlGgVSzJoFkdAp9CE/4ZdfXV9lChoBmgJaA9DCAeXjjnP2N+/lIaUUpRoFUsyaBZHQKfTOLncL0B1fZQoaAZoCWgPQwhtyaoIN5npv5SGlFKUaBVLMmgWR0Cn0va9bor4dX2UKGgGaAloD0MI3sZmR6qv97+UhpRSlGgVSzJoFkdAp9K6Eal1sHV9lChoBmgJaA9DCLzK2qZ43PS/lIaUUpRoFUsyaBZHQKfSelKK5091fZQoaAZoCWgPQwh0Iywq4vTsv5SGlFKUaBVLMmgWR0Cn1X1AAyVOdX2UKGgGaAloD0MIdF34wfnU5L+UhpRSlGgVSzJoFkdAp9U7HU+cIHV9lChoBmgJaA9DCHmwxW6fFfG/lIaUUpRoFUsyaBZHQKfU/kfcN6R1fZQoaAZoCWgPQwgHeNLCZdXzv5SGlFKUaBVLMmgWR0Cn1L6F/QSjdX2UKGgGaAloD0MIF0m70ce88L+UhpRSlGgVSzJoFkdAp9cT212JSHV9lChoBmgJaA9DCEjBU8iV+u6/lIaUUpRoFUsyaBZHQKfW0MxXXAd1fZQoaAZoCWgPQwjhB+dTxyrZv5SGlFKUaBVLMmgWR0Cn1pMaKk2xdX2UKGgGaAloD0MIqkavBihN/7+UhpRSlGgVSzJoFkdAp9ZSed07sHV9lChoBmgJaA9DCAHChxItefe/lIaUUpRoFUsyaBZHQKfYRYISlFd1fZQoaAZoCWgPQwglJNI2/kT/v5SGlFKUaBVLMmgWR0Cn2AKujh1ldX2UKGgGaAloD0MIDtlAuti09L+UhpRSlGgVSzJoFkdAp9fE/2TPjXV9lChoBmgJaA9DCHwOLEfIAPi/lIaUUpRoFUsyaBZHQKfXhF98Z1p1fZQoaAZoCWgPQwjNyYtMwG/wv5SGlFKUaBVLMmgWR0Cn2WbTMJQddX2UKGgGaAloD0MIIQVPIVfq5b+UhpRSlGgVSzJoFkdAp9kj0xubZ3V9lChoBmgJaA9DCM+G/DOD+OK/lIaUUpRoFUsyaBZHQKfY5kWAPNF1fZQoaAZoCWgPQwi/8EqS5/rrv5SGlFKUaBVLMmgWR0Cn2KWvB7/odX2UKGgGaAloD0MIWmWmtP6W7L+UhpRSlGgVSzJoFkdAp9q6naWX1XV9lChoBmgJaA9DCI/FNqlorOu/lIaUUpRoFUsyaBZHQKfad2h7E511fZQoaAZoCWgPQwj83xEVqhvrv5SGlFKUaBVLMmgWR0Cn2jmmUGFBdX2UKGgGaAloD0MIL8A+OnVl77+UhpRSlGgVSzJoFkdAp9n58c+7lXV9lChoBmgJaA9DCPXYlgFnKem/lIaUUpRoFUsyaBZHQKfb4RujynV1fZQoaAZoCWgPQwgPQkC+hArcv5SGlFKUaBVLMmgWR0Cn254Oc2BKdX2UKGgGaAloD0MIo+nsZHAU47+UhpRSlGgVSzJoFkdAp9tgWi1zAHV9lChoBmgJaA9DCJKXNbHAV9S/lIaUUpRoFUsyaBZHQKfbH6OYIB11fZQoaAZoCWgPQwh1AwXeyafev5SGlFKUaBVLMmgWR0Cn3RWM85jpdX2UKGgGaAloD0MIpriq7Lsi17+UhpRSlGgVSzJoFkdAp9zSkM1CPnV9lChoBmgJaA9DCMn/5O/eUd6/lIaUUpRoFUsyaBZHQKfclOWSlnB1fZQoaAZoCWgPQwguOIO/X8zdv5SGlFKUaBVLMmgWR0Cn3FQ/HHWCdX2UKGgGaAloD0MIvM6G/DOD5L+UhpRSlGgVSzJoFkdAp945ul41P3V9lChoBmgJaA9DCMReKGA7GPK/lIaUUpRoFUsyaBZHQKfd94eLehx1fZQoaAZoCWgPQwi14bA08CPkv5SGlFKUaBVLMmgWR0Cn3bpt78ekdX2UKGgGaAloD0MIM/rRcMpc6L+UhpRSlGgVSzJoFkdAp9150IToMnV9lChoBmgJaA9DCHU/pyA/m/O/lIaUUpRoFUsyaBZHQKffaO2AoXt1fZQoaAZoCWgPQwjCS3DqA0nov5SGlFKUaBVLMmgWR0Cn3yXw1BMSdX2UKGgGaAloD0MIamtEMA4u1L+UhpRSlGgVSzJoFkdAp97oagmJFnV9lChoBmgJaA9DCD7ONGH7yeC/lIaUUpRoFUsyaBZHQKfep7fHggp1fZQoaAZoCWgPQwiIMH4a92b1v5SGlFKUaBVLMmgWR0Cn4L1eruIAdX2UKGgGaAloD0MIxGD+Cpmr4r+UhpRSlGgVSzJoFkdAp+B6ay8jA3V9lChoBmgJaA9DCJ7t0RvuI+S/lIaUUpRoFUsyaBZHQKfgPNWU8mt1fZQoaAZoCWgPQwjDSC9q96vmv5SGlFKUaBVLMmgWR0Cn3/wtrbg1dX2UKGgGaAloD0MIthDkoISZ0b+UhpRSlGgVSzJoFkdAp+HxJkGzKXV9lChoBmgJaA9DCPrUsUrpGe2/lIaUUpRoFUsyaBZHQKfhrjZL7Gh1fZQoaAZoCWgPQwii0/NuLCjQv5SGlFKUaBVLMmgWR0Cn4XDZlFtsdX2UKGgGaAloD0MI14aKcf4m07+UhpRSlGgVSzJoFkdAp+ExQFcIJXV9lChoBmgJaA9DCCF00CUceuW/lIaUUpRoFUsyaBZHQKfjIMxXXAd1fZQoaAZoCWgPQwgkl/+Qfnvgv5SGlFKUaBVLMmgWR0Cn4t3dCVrzdX2UKGgGaAloD0MIAaQ2cXK/6b+UhpRSlGgVSzJoFkdAp+KgaNuLrHV9lChoBmgJaA9DCDS+Ly5VafK/lIaUUpRoFUsyaBZHQKfiX8ma6SV1fZQoaAZoCWgPQwgl5llJK77rv5SGlFKUaBVLMmgWR0Cn5EDqfOD8dX2UKGgGaAloD0MIt7jGZ7L/6L+UhpRSlGgVSzJoFkdAp+P91KXfInV9lChoBmgJaA9DCI8ZqIx/3/S/lIaUUpRoFUsyaBZHQKfjwA7Pppx1fZQoaAZoCWgPQwhma32R0Bbhv5SGlFKUaBVLMmgWR0Cn439fLLZBdX2UKGgGaAloD0MIE2ba/pUV4r+UhpRSlGgVSzJoFkdAp+Vlq8DjinV9lChoBmgJaA9DCMdnsn+ehum/lIaUUpRoFUsyaBZHQKflIrsByS51fZQoaAZoCWgPQwhEiZY8nlb5v5SGlFKUaBVLMmgWR0Cn5OUn5SFXdX2UKGgGaAloD0MIS7A4nPnV8r+UhpRSlGgVSzJoFkdAp+Sklu3tr3V9lChoBmgJaA9DCPVoqifzD+e/lIaUUpRoFUsyaBZHQKfmlOt4iX91fZQoaAZoCWgPQwi5OCo3Ucvov5SGlFKUaBVLMmgWR0Cn5lHoHLRsdX2UKGgGaAloD0MIPpRoyeOp8r+UhpRSlGgVSzJoFkdAp+YUTrVvuXV9lChoBmgJaA9DCA2nzM03oue/lIaUUpRoFUsyaBZHQKfl08f3evZ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0d53c35d0a7fead6e9aef30b06e2ba8a4114953d0e148888050afa90956edf4
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b6957c054cf0abb0cd2e7bbd55f780cebc9cac2a80e1bc75a2c731bae67d6fd
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f223d3f0af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f223d3e4f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677498054578125956, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/9UvlPrbvIL24OwU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeh/bPkFJmr/NyJQ/9rqSv8WyL73cfna/g/6gv6ovVb9xT6C/AodVv66ti78M15E/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+jv1S+U+tu8gvbg7BT/ZnjI8eZGRu7Iv+juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]\n [ 0.44784513 -0.03929111 0.5204425 ]]", "desired_goal": "[[ 0.42797452 -1.2053605 1.162378 ]\n [-1.1463306 -0.0428951 -0.9628732 ]\n [-1.2577671 -0.83275855 -1.2524244 ]\n [-0.8340913 -1.0912378 1.1393752 ]]", "observation": "[[ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]\n [ 0.44784513 -0.03929111 0.5204425 0.01090213 -0.00444239 0.00763508]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPHETPvgfiL3GqYU+wcqwvUQ/OD0/aDw82bmlPYKf8D3wTLw9d7jmPdcifztBMDo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14398664 -0.06646723 0.2610609 ]\n [-0.08632422 0.04498221 0.01149946]\n [ 0.08092088 0.11749174 0.09194362]\n [ 0.11265653 0.00389307 0.1818247 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP1bw2xDj7r+UhpRSlIwBbJRLMowBdJRHQKfFUnNxEOR1fZQoaAZoCWgPQwhEFmniHeDsv5SGlFKUaBVLMmgWR0CnxQ9Vea8ZdX2UKGgGaAloD0MIL204LA3887+UhpRSlGgVSzJoFkdAp8TRrcj7h3V9lChoBmgJaA9DCL+AXrhzIfy/lIaUUpRoFUsyaBZHQKfEkPeYUnJ1fZQoaAZoCWgPQwhU5uYb0T35v5SGlFKUaBVLMmgWR0CnxqUrTYukdX2UKGgGaAloD0MIpaSHodWJ9b+UhpRSlGgVSzJoFkdAp8ZiJTER8XV9lChoBmgJaA9DCET3rGu0fADAlIaUUpRoFUsyaBZHQKfGJHd43WF1fZQoaAZoCWgPQwgEVg4tst31v5SGlFKUaBVLMmgWR0CnxeSl3yI6dX2UKGgGaAloD0MIf/lkxXB18r+UhpRSlGgVSzJoFkdAp8fCPjn3c3V9lChoBmgJaA9DCHYZ/tMNVPi/lIaUUpRoFUsyaBZHQKfHgEmICU51fZQoaAZoCWgPQwgLDcSymeMDwJSGlFKUaBVLMmgWR0Cnx0OIRAbAdX2UKGgGaAloD0MILexph7/m9L+UhpRSlGgVSzJoFkdAp8cDG96C2HV9lChoBmgJaA9DCEZ8J2a92PO/lIaUUpRoFUsyaBZHQKfI2oJAt4B1fZQoaAZoCWgPQwiHF0Skpl37v5SGlFKUaBVLMmgWR0CnyJeIuXeFdX2UKGgGaAloD0MIjQqcbAP3/L+UhpRSlGgVSzJoFkdAp8hZxvNu+HV9lChoBmgJaA9DCPryAuyjE/W/lIaUUpRoFUsyaBZHQKfIGezUqhF1fZQoaAZoCWgPQwiUvhBy3v/sv5SGlFKUaBVLMmgWR0CnyhONPxhEdX2UKGgGaAloD0MI5j+k374O97+UhpRSlGgVSzJoFkdAp8nQYYR/VnV9lChoBmgJaA9DCDWYhuEjovq/lIaUUpRoFUsyaBZHQKfJkpcX3xp1fZQoaAZoCWgPQwgiwVQzaynsv5SGlFKUaBVLMmgWR0CnyVIC2c8UdX2UKGgGaAloD0MIPWU1XU/07L+UhpRSlGgVSzJoFkdAp8tIXXRPXXV9lChoBmgJaA9DCIyDS8ecp/m/lIaUUpRoFUsyaBZHQKfLBWT5ftx1fZQoaAZoCWgPQwhqaW6FsBrhv5SGlFKUaBVLMmgWR0Cnyse2uxKQdX2UKGgGaAloD0MI41Eq4Qm947+UhpRSlGgVSzJoFkdAp8qHFR51NnV9lChoBmgJaA9DCIjZy7bTlvW/lIaUUpRoFUsyaBZHQKfM7PpIMBp1fZQoaAZoCWgPQwiIn/8evHbov5SGlFKUaBVLMmgWR0CnzKrfcer/dX2UKGgGaAloD0MIxLEubqOB5L+UhpRSlGgVSzJoFkdAp8xt65XlsHV9lChoBmgJaA9DCJV9VwT/2+W/lIaUUpRoFUsyaBZHQKfMLiBGx2V1fZQoaAZoCWgPQwgPDYtR19rxv5SGlFKUaBVLMmgWR0Cnzw1afSQYdX2UKGgGaAloD0MITIi5pGo78r+UhpRSlGgVSzJoFkdAp87LHIZIhHV9lChoBmgJaA9DCEIj2Lj+Xeq/lIaUUpRoFUsyaBZHQKfOjlz2exx1fZQoaAZoCWgPQwgNpmH4iFjxv5SGlFKUaBVLMmgWR0Cnzk4Vh1DCdX2UKGgGaAloD0MIiGcJMgJq+b+UhpRSlGgVSzJoFkdAp9FBy0a6z3V9lChoBmgJaA9DCIVcqWdByADAlIaUUpRoFUsyaBZHQKfQ/9jPOY91fZQoaAZoCWgPQwjX2vtUFVr3v5SGlFKUaBVLMmgWR0Cn0MSaEzwddX2UKGgGaAloD0MIj2/vGvSl77+UhpRSlGgVSzJoFkdAp9CE/4ZdfXV9lChoBmgJaA9DCAeXjjnP2N+/lIaUUpRoFUsyaBZHQKfTOLncL0B1fZQoaAZoCWgPQwhtyaoIN5npv5SGlFKUaBVLMmgWR0Cn0va9bor4dX2UKGgGaAloD0MI3sZmR6qv97+UhpRSlGgVSzJoFkdAp9K6Eal1sHV9lChoBmgJaA9DCLzK2qZ43PS/lIaUUpRoFUsyaBZHQKfSelKK5091fZQoaAZoCWgPQwh0Iywq4vTsv5SGlFKUaBVLMmgWR0Cn1X1AAyVOdX2UKGgGaAloD0MIdF34wfnU5L+UhpRSlGgVSzJoFkdAp9U7HU+cIHV9lChoBmgJaA9DCHmwxW6fFfG/lIaUUpRoFUsyaBZHQKfU/kfcN6R1fZQoaAZoCWgPQwgHeNLCZdXzv5SGlFKUaBVLMmgWR0Cn1L6F/QSjdX2UKGgGaAloD0MIF0m70ce88L+UhpRSlGgVSzJoFkdAp9cT212JSHV9lChoBmgJaA9DCEjBU8iV+u6/lIaUUpRoFUsyaBZHQKfW0MxXXAd1fZQoaAZoCWgPQwjhB+dTxyrZv5SGlFKUaBVLMmgWR0Cn1pMaKk2xdX2UKGgGaAloD0MIqkavBihN/7+UhpRSlGgVSzJoFkdAp9ZSed07sHV9lChoBmgJaA9DCAHChxItefe/lIaUUpRoFUsyaBZHQKfYRYISlFd1fZQoaAZoCWgPQwglJNI2/kT/v5SGlFKUaBVLMmgWR0Cn2AKujh1ldX2UKGgGaAloD0MIDtlAuti09L+UhpRSlGgVSzJoFkdAp9fE/2TPjXV9lChoBmgJaA9DCHwOLEfIAPi/lIaUUpRoFUsyaBZHQKfXhF98Z1p1fZQoaAZoCWgPQwjNyYtMwG/wv5SGlFKUaBVLMmgWR0Cn2WbTMJQddX2UKGgGaAloD0MIIQVPIVfq5b+UhpRSlGgVSzJoFkdAp9kj0xubZ3V9lChoBmgJaA9DCM+G/DOD+OK/lIaUUpRoFUsyaBZHQKfY5kWAPNF1fZQoaAZoCWgPQwi/8EqS5/rrv5SGlFKUaBVLMmgWR0Cn2KWvB7/odX2UKGgGaAloD0MIWmWmtP6W7L+UhpRSlGgVSzJoFkdAp9q6naWX1XV9lChoBmgJaA9DCI/FNqlorOu/lIaUUpRoFUsyaBZHQKfad2h7E511fZQoaAZoCWgPQwj83xEVqhvrv5SGlFKUaBVLMmgWR0Cn2jmmUGFBdX2UKGgGaAloD0MIL8A+OnVl77+UhpRSlGgVSzJoFkdAp9n58c+7lXV9lChoBmgJaA9DCPXYlgFnKem/lIaUUpRoFUsyaBZHQKfb4RujynV1fZQoaAZoCWgPQwgPQkC+hArcv5SGlFKUaBVLMmgWR0Cn254Oc2BKdX2UKGgGaAloD0MIo+nsZHAU47+UhpRSlGgVSzJoFkdAp9tgWi1zAHV9lChoBmgJaA9DCJKXNbHAV9S/lIaUUpRoFUsyaBZHQKfbH6OYIB11fZQoaAZoCWgPQwh1AwXeyafev5SGlFKUaBVLMmgWR0Cn3RWM85jpdX2UKGgGaAloD0MIpriq7Lsi17+UhpRSlGgVSzJoFkdAp9zSkM1CPnV9lChoBmgJaA9DCMn/5O/eUd6/lIaUUpRoFUsyaBZHQKfclOWSlnB1fZQoaAZoCWgPQwguOIO/X8zdv5SGlFKUaBVLMmgWR0Cn3FQ/HHWCdX2UKGgGaAloD0MIvM6G/DOD5L+UhpRSlGgVSzJoFkdAp945ul41P3V9lChoBmgJaA9DCMReKGA7GPK/lIaUUpRoFUsyaBZHQKfd94eLehx1fZQoaAZoCWgPQwi14bA08CPkv5SGlFKUaBVLMmgWR0Cn3bpt78ekdX2UKGgGaAloD0MIM/rRcMpc6L+UhpRSlGgVSzJoFkdAp9150IToMnV9lChoBmgJaA9DCHU/pyA/m/O/lIaUUpRoFUsyaBZHQKffaO2AoXt1fZQoaAZoCWgPQwjCS3DqA0nov5SGlFKUaBVLMmgWR0Cn3yXw1BMSdX2UKGgGaAloD0MIamtEMA4u1L+UhpRSlGgVSzJoFkdAp97oagmJFnV9lChoBmgJaA9DCD7ONGH7yeC/lIaUUpRoFUsyaBZHQKfep7fHggp1fZQoaAZoCWgPQwiIMH4a92b1v5SGlFKUaBVLMmgWR0Cn4L1eruIAdX2UKGgGaAloD0MIxGD+Cpmr4r+UhpRSlGgVSzJoFkdAp+B6ay8jA3V9lChoBmgJaA9DCJ7t0RvuI+S/lIaUUpRoFUsyaBZHQKfgPNWU8mt1fZQoaAZoCWgPQwjDSC9q96vmv5SGlFKUaBVLMmgWR0Cn3/wtrbg1dX2UKGgGaAloD0MIthDkoISZ0b+UhpRSlGgVSzJoFkdAp+HxJkGzKXV9lChoBmgJaA9DCPrUsUrpGe2/lIaUUpRoFUsyaBZHQKfhrjZL7Gh1fZQoaAZoCWgPQwii0/NuLCjQv5SGlFKUaBVLMmgWR0Cn4XDZlFtsdX2UKGgGaAloD0MI14aKcf4m07+UhpRSlGgVSzJoFkdAp+ExQFcIJXV9lChoBmgJaA9DCCF00CUceuW/lIaUUpRoFUsyaBZHQKfjIMxXXAd1fZQoaAZoCWgPQwgkl/+Qfnvgv5SGlFKUaBVLMmgWR0Cn4t3dCVrzdX2UKGgGaAloD0MIAaQ2cXK/6b+UhpRSlGgVSzJoFkdAp+KgaNuLrHV9lChoBmgJaA9DCDS+Ly5VafK/lIaUUpRoFUsyaBZHQKfiX8ma6SV1fZQoaAZoCWgPQwgl5llJK77rv5SGlFKUaBVLMmgWR0Cn5EDqfOD8dX2UKGgGaAloD0MIt7jGZ7L/6L+UhpRSlGgVSzJoFkdAp+P91KXfInV9lChoBmgJaA9DCI8ZqIx/3/S/lIaUUpRoFUsyaBZHQKfjwA7Pppx1fZQoaAZoCWgPQwhma32R0Bbhv5SGlFKUaBVLMmgWR0Cn439fLLZBdX2UKGgGaAloD0MIE2ba/pUV4r+UhpRSlGgVSzJoFkdAp+Vlq8DjinV9lChoBmgJaA9DCMdnsn+ehum/lIaUUpRoFUsyaBZHQKflIrsByS51fZQoaAZoCWgPQwhEiZY8nlb5v5SGlFKUaBVLMmgWR0Cn5OUn5SFXdX2UKGgGaAloD0MIS7A4nPnV8r+UhpRSlGgVSzJoFkdAp+Sklu3tr3V9lChoBmgJaA9DCPVoqifzD+e/lIaUUpRoFUsyaBZHQKfmlOt4iX91fZQoaAZoCWgPQwi5OCo3Ucvov5SGlFKUaBVLMmgWR0Cn5lHoHLRsdX2UKGgGaAloD0MIPpRoyeOp8r+UhpRSlGgVSzJoFkdAp+YUTrVvuXV9lChoBmgJaA9DCA2nzM03oue/lIaUUpRoFUsyaBZHQKfl08f3evZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (350 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.832503164256923, "std_reward": 0.269606963047778, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T12:31:57.636610"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e3c11e9aac44b44425135504d389d791325c100c766f0de87142f62b5f7a89f
|
3 |
+
size 3056
|