update readme.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- privacy
|
5 |
+
- policy-analysis
|
6 |
+
- classification
|
7 |
+
- text-classification
|
8 |
+
- transformers
|
9 |
+
- distilbert
|
10 |
+
library_name: transformers
|
11 |
+
datasets:
|
12 |
+
- opp-115
|
13 |
+
model-index:
|
14 |
+
- name: Privacy Clause Classifier (DistilBERT - OPP-115)
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
# Privacy Clause Classifier (DistilBERT - OPP-115)
|
19 |
+
|
20 |
+
This model is a fine-tuned DistilBERT model designed to classify **privacy policy clauses** into one of the predefined privacy practices based on the [OPP-115 dataset](https://privacy-hosting.isi.edu/data/OPP-115.pdf).
|
21 |
+
|
22 |
+
| ID | Category |
|
23 |
+
|----|---------------------------------|
|
24 |
+
| 0 | Data Retention |
|
25 |
+
| 1 | Data Security |
|
26 |
+
| 2 | Do Not Track |
|
27 |
+
| 3 | First Party Collection/Use |
|
28 |
+
| 4 | International and Specific Audiences |
|
29 |
+
| 5 | Other |
|
30 |
+
| 6 | Policy Change |
|
31 |
+
| 7 | Third Party Sharing/Collection |
|
32 |
+
| 8 | User Access, Edit and Deletion |
|
33 |
+
| 9 | User Choice/Control |
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## Model Details
|
38 |
+
|
39 |
+
- **Architecture**: DistilBERT (pretrained)
|
40 |
+
- **Fine-tuning Dataset**: [OPP-115 Dataset](https://privacy-hosting.isi.edu/data/OPP-115.pdf)
|
41 |
+
- **Input Format**: Text snippets from privacy policies
|
42 |
+
- **Output Format**: Predicted class label with probabilities
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
## Intended Uses
|
47 |
+
|
48 |
+
- Automatic **privacy policy clause classification**
|
49 |
+
- **Regulatory technology (RegTech)** tools
|
50 |
+
- **Privacy policy summarization** and simplification
|
51 |
+
- **Risk analysis** for data sharing and collection practices
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
## How to Use
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
59 |
+
import torch
|
60 |
+
|
61 |
+
# Load model
|
62 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("your-hf-username/your-model-name")
|
63 |
+
model = DistilBertForSequenceClassification.from_pretrained("your-hf-username/your-model-name")
|
64 |
+
|
65 |
+
# Predict
|
66 |
+
text = "We may collect your location data to provide customized services."
|
67 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
68 |
+
outputs = model(**inputs)
|
69 |
+
predicted_class = torch.argmax(outputs.logits, dim=-1).item()
|
70 |
+
|
71 |
+
print(f"Predicted Category: {predicted_class}")
|