--- base_model: mistralai/Mistral-7B-v0.1 datasets: - siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320 library_name: transformers license: apache-2.0 tags: - alignment-handbook - generated_from_trainer pipeline_tag: text-generation model-index: - name: mistral-feedbuhcp2-dft-lr2e-6-tau1.0-u_init0-s2-e2-gamma0.85 results: [] --- # Mistral-7B-DFT This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the siqi00/mistral_ultrafeedback_unhelpful_chatprompt_0.7_1.0_50_320 dataset. It was finetuned as part of the paper [Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data](https://arxiv.org/abs/2502.18679) The code is available at https://github.com/PenGuln/DFT. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.2+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1 ### Usage Example The model can be used for text generation tasks. A basic example using the `transformers` library is shown below: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import torch model_id = "siqi00/Mistral-7B-DFT" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) prompt = "What is the capital of France?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) generation_config = GenerationConfig(max_new_tokens=20, temperature=0.7) outputs = model.generate(inputs["input_ids"], generation_config=generation_config) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` Remember to install the necessary libraries (`pip install transformers`) and adjust parameters like `temperature` and `max_new_tokens` to fine-tune generation. ## Citation ```bibtex @misc{guo2025discriminativefinetuninggenerativelarge, title={Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data}, author={Siqi Guo and Ilgee Hong and Vicente Balmaseda and Tuo Zhao and Tianbao Yang}, year={2025}, eprint={2502.18679}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.18679}, } ```