silentOne's picture
Upload PPO LunarLander-v2 trained agent
a366c20
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00378ff170>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00378ff200>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00378ff290>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00378ff320>",
"_build": "<function ActorCriticPolicy._build at 0x7f00378ff3b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f00378ff440>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00378ff4d0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f00378ff560>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00378ff5f0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00378ff680>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00378ff710>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f00379590c0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 507904,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651780337.084117,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbi/D2FS9M4atxLvCTbOrrarxY8eVsmuwAAgD8AAIA/AHMEPfaUOLqbju+5/XgAtiU/DroH0wg5AACAPwAAgD+aLUk8j2oMul9CDTt8FYm20dn/Ond7grUAAIA/AACAP3Nryb0puAS6VXnVOhE42zXc/my667n1uQAAgD8AAIA/hqI0voWjvTpKcfk5BEZCtjHehby0bQ25AACAPwAAgD+afgM9SDOKuqVOHTmAoTszl0iXukmEM7gAAIA/AACAP+6eBr/IJ1q+FuSRvktri72birA+IypeNgAAgD8AAAAA8xjfvVwHa7oChaq756wTt/+IF7sa48Y6AACAPwAAgD9gHEi+JINGPDQ0MjisREa2cF3fvWBdXLcAAIA/AACAP/4ot74fZZ86gA6iukWRULhHMiI97rPZOQAAgD8AAIA/AM1yPcO9aLp/iJQ6zZL8tCLkDDsmkay5AACAPwAAgD+241S+aaAYvOXUVzs8zSs5xKiEPf1Z8bkAAIA/AACAPzPMwT0fLfG593Y0uYBvpjOMI8y6ArNTOAAAgD8AAIA/M4kpvY8+dLqOvni6gjXstRXySDr3lY45AACAPwAAgD/N8nQ+8cc8PIpGj7t5U6K5rUTSPRb89rkAAIA/AACAP82F5rzhmvu4kcYAuQlSULSHEqo72NsXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3rBtUWa4YECUhpRSlIwBbJRN6AOMAXSUR0CCBOX0oSctdX2UKGgGaAloD0MIbyu9NhtBV0CUhpRSlGgVTegDaBZHQIISzQ1JlJ91fZQoaAZoCWgPQwj/HydMGB9WQJSGlFKUaBVN6ANoFkdAghgWWyC4BnV9lChoBmgJaA9DCFJ95xcl0FhAlIaUUpRoFU3oA2gWR0CCGGqPOpsHdX2UKGgGaAloD0MItvKS/8knPECUhpRSlGgVTTABaBZHQIIYt87ZFod1fZQoaAZoCWgPQwhCYOXQooxgQJSGlFKUaBVN6ANoFkdAgh5lGPPszHV9lChoBmgJaA9DCGN7Lei9UGJAlIaUUpRoFU3oA2gWR0CCI84iosI3dX2UKGgGaAloD0MIs++K4H+WXECUhpRSlGgVTegDaBZHQIIu0C9ytFN1fZQoaAZoCWgPQwhDqb2Itis8QJSGlFKUaBVNGAFoFkdAgjnij1wo9nV9lChoBmgJaA9DCIwRiULLTjpAlIaUUpRoFUvcaBZHQIKIQxHoX9B1fZQoaAZoCWgPQwiob5nTZWdgQJSGlFKUaBVN6ANoFkdAgpOu09hZyXV9lChoBmgJaA9DCLq/ety3Y1lAlIaUUpRoFU3oA2gWR0CCloUcn3L3dX2UKGgGaAloD0MIakyIuaS6JMCUhpRSlGgVS+JoFkdAgpawDeTFEXV9lChoBmgJaA9DCFBu2/eocWJAlIaUUpRoFU3oA2gWR0CCmVeenQ6ZdX2UKGgGaAloD0MIlWOyuP8yX0CUhpRSlGgVTegDaBZHQIKfctsenyd1fZQoaAZoCWgPQwgewY2ULZNiQJSGlFKUaBVN6ANoFkdAgqdvxH5JsnV9lChoBmgJaA9DCAQ8aeGygmJAlIaUUpRoFU3oA2gWR0CCqMeZG8VYdX2UKGgGaAloD0MIFD/G3LWIX0CUhpRSlGgVTegDaBZHQILHmTRplBh1fZQoaAZoCWgPQwji578Hr+peQJSGlFKUaBVN6ANoFkdAgsv420iQk3V9lChoBmgJaA9DCL2nctpTL2RAlIaUUpRoFU3oA2gWR0CC0mq6vq1PdX2UKGgGaAloD0MIzSIUW0GUWkCUhpRSlGgVTegDaBZHQILkwACGN711fZQoaAZoCWgPQwi4rMJmgJJcQJSGlFKUaBVN6ANoFkdAguUQmeDnNnV9lChoBmgJaA9DCJf9utOdjVZAlIaUUpRoFU3oA2gWR0CC5Vp0wJw9dX2UKGgGaAloD0MIskrpmd5wYUCUhpRSlGgVTegDaBZHQILqg9A5aNd1fZQoaAZoCWgPQwg4SIjyBU0PwJSGlFKUaBVL42gWR0CC7CbI91U3dX2UKGgGaAloD0MIFLAdjFgFZECUhpRSlGgVTegDaBZHQILvbCzkZJl1fZQoaAZoCWgPQwgBLzNslI1gQJSGlFKUaBVN6ANoFkdAg0/jlYEGJXV9lChoBmgJaA9DCGoxeJh2ZGBAlIaUUpRoFU3oA2gWR0CDWf3Qla8pdX2UKGgGaAloD0MItw2jIHjhYkCUhpRSlGgVTegDaBZHQINcXOSntOV1fZQoaAZoCWgPQwgfLGNDN6FiQJSGlFKUaBVN6ANoFkdAg1yFLvkRz3V9lChoBmgJaA9DCKuy74rgj15AlIaUUpRoFU3oA2gWR0CDXse8PFvRdX2UKGgGaAloD0MIml5iLFN1YECUhpRSlGgVTegDaBZHQINj1wPy08h1fZQoaAZoCWgPQwizQLtDirpfQJSGlFKUaBVN6ANoFkdAg2p4nv2GqXV9lChoBmgJaA9DCNieWRIgQ2NAlIaUUpRoFU3oA2gWR0CDa6bfgrH3dX2UKGgGaAloD0MIIv5hS4+WIkCUhpRSlGgVS8RoFkdAg3GpiI+GGnV9lChoBmgJaA9DCD9z1qccIzxAlIaUUpRoFUu8aBZHQIN0p04iosJ1fZQoaAZoCWgPQwg2zTtO0U1BQJSGlFKUaBVLsGgWR0CDgP0UXYUWdX2UKGgGaAloD0MITkUqjC2vYkCUhpRSlGgVTegDaBZHQIOFRJZntfJ1fZQoaAZoCWgPQwh6U5EK4xVmQJSGlFKUaBVN6ANoFkdAg47NNSIgvHV9lChoBmgJaA9DCD7PnzYqKW5AlIaUUpRoFU2YA2gWR0CDnd6yB06pdX2UKGgGaAloD0MITRWMSupLXECUhpRSlGgVTegDaBZHQIOg00m+j/N1fZQoaAZoCWgPQwjrGi0Heh5ZQJSGlFKUaBVN6ANoFkdAg6Eh68g6l3V9lChoBmgJaA9DCLnEkQciBlpAlIaUUpRoFU3oA2gWR0CDoWZBLPD6dX2UKGgGaAloD0MI26Z4XFTJYUCUhpRSlGgVTegDaBZHQIOmibONYKZ1fZQoaAZoCWgPQwhkraHUXlpfQJSGlFKUaBVN6ANoFkdAg6t2vKU3XXV9lChoBmgJaA9DCBO3CmIgUmBAlIaUUpRoFU3oA2gWR0CD1liXIEKWdX2UKGgGaAloD0MIE/BrJImtYECUhpRSlGgVTegDaBZHQIQajp1RtP51fZQoaAZoCWgPQwgXuaerO11hQJSGlFKUaBVN6ANoFkdAhBq4R28qWnV9lChoBmgJaA9DCFXCE3p9mmFAlIaUUpRoFU3oA2gWR0CEIyy+pOvddX2UKGgGaAloD0MIEYsYdpiQY0CUhpRSlGgVTegDaBZHQIQrKbUgB911fZQoaAZoCWgPQwhs6jwqfk9gQJSGlFKUaBVN6ANoFkdAhDOuQZGayHV9lChoBmgJaA9DCGgj100pkmRAlIaUUpRoFU3oA2gWR0CENyPXkHUudX2UKGgGaAloD0MIOnR63o0lMcCUhpRSlGgVS+loFkdAhDqdlEqlQHV9lChoBmgJaA9DCKcExCTcK2BAlIaUUpRoFU3oA2gWR0CEQ2vZAY51dX2UKGgGaAloD0MIJ6JfWz89YUCUhpRSlGgVTegDaBZHQIRHrOX3QD51fZQoaAZoCWgPQwiRuMfSB2VrQJSGlFKUaBVN1AJoFkdAhEh0h/y5JHV9lChoBmgJaA9DCGx4eqUs1lpAlIaUUpRoFU3oA2gWR0CEUNbxEv0zdX2UKGgGaAloD0MIkzfAzHezW0CUhpRSlGgVTegDaBZHQIRfDK3d9Dx1fZQoaAZoCWgPQwjmstE5P8tfQJSGlFKUaBVN6ANoFkdAhGHVuJk5InV9lChoBmgJaA9DCB8OEqJ8amNAlIaUUpRoFU3oA2gWR0CEYhtIClrNdX2UKGgGaAloD0MIMLq8OdxrZ0CUhpRSlGgVTegDaBZHQIRiX7WNFSd1fZQoaAZoCWgPQwggC9EhcIFgQJSGlFKUaBVN6ANoFkdAhGd6JQ+EAnV9lChoBmgJaA9DCD230JUIlPk/lIaUUpRoFUvQaBZHQISCnR1HOKR1fZQoaAZoCWgPQwhb6iCvB1FhQJSGlFKUaBVN6ANoFkdAhJbt2LYPG3V9lChoBmgJaA9DCARxHk5gSGBAlIaUUpRoFU3oA2gWR0CE2rrJKaoddX2UKGgGaAloD0MIZTcz+tEYY0CUhpRSlGgVTegDaBZHQITjQ0Mw1zh1fZQoaAZoCWgPQwjcSq/NxkJeQJSGlFKUaBVN6ANoFkdAhOs4/mknC3V9lChoBmgJaA9DCOse2Vw1YzhAlIaUUpRoFUvHaBZHQITrYT0xubZ1fZQoaAZoCWgPQwi9OseA7NBiQJSGlFKUaBVN6ANoFkdAhPP/6oESunV9lChoBmgJaA9DCOWYLO4/oV5AlIaUUpRoFU3oA2gWR0CE91pu/DcedX2UKGgGaAloD0MIhC12+yw0YUCUhpRSlGgVTegDaBZHQIT65uQ6p5x1fZQoaAZoCWgPQwgVHjS7bmJgQJSGlFKUaBVN6ANoFkdAhQNoy9EkSnV9lChoBmgJaA9DCPncCfbf/GFAlIaUUpRoFU3oA2gWR0CFB2HwgDA8dX2UKGgGaAloD0MIYizTLxG2VkCUhpRSlGgVTegDaBZHQIUIK7I1cdJ1fZQoaAZoCWgPQwgonN1aptRhQJSGlFKUaBVN6ANoFkdAhQ/px//ecnV9lChoBmgJaA9DCByXcVMD3GJAlIaUUpRoFU3oA2gWR0CFHbapxWDIdX2UKGgGaAloD0MIw0Xu6eoEX0CUhpRSlGgVTegDaBZHQIUgm6kIomZ1fZQoaAZoCWgPQwg0hGOWPctiQJSGlFKUaBVN6ANoFkdAhSDoPbwjMXV9lChoBmgJaA9DCMYVF0flCmZAlIaUUpRoFU3oA2gWR0CFIScNpdrwdX2UKGgGaAloD0MInS/2XnzhMcCUhpRSlGgVS9ZoFkdAhSs7Q9ic5XV9lChoBmgJaA9DCN1e0hitZUJAlIaUUpRoFUvNaBZHQIU6kfA9FF51fZQoaAZoCWgPQwiTcYxkDxhjQJSGlFKUaBVN6ANoFkdAhUCvHLida3V9lChoBmgJaA9DCCf3OxQF1mBAlIaUUpRoFU3oA2gWR0CFlsBZIQOGdX2UKGgGaAloD0MIVu9wOzSASUCUhpRSlGgVTRYBaBZHQIWZGhqTKT11fZQoaAZoCWgPQwg7ONibGLZiQJSGlFKUaBVN6ANoFkdAhZ82ys0YTHV9lChoBmgJaA9DCCGSIcfWRl1AlIaUUpRoFU3oA2gWR0CFpvNeMQ2/dX2UKGgGaAloD0MITfT5KCNoXkCUhpRSlGgVTegDaBZHQIWnG+7Dl5p1fZQoaAZoCWgPQwhortNISxVeQJSGlFKUaBVN6ANoFkdAha+gnUlRg3V9lChoBmgJaA9DCI8zTdh+sVlAlIaUUpRoFU3oA2gWR0CFsv5LytmudX2UKGgGaAloD0MINxyWBn7QXkCUhpRSlGgVTegDaBZHQIW2fCj1wo91fZQoaAZoCWgPQwgKvmn67NZbQJSGlFKUaBVN6ANoFkdAhb8DjR2KVXV9lChoBmgJaA9DCBwkRPkC9GJAlIaUUpRoFU3oA2gWR0CFwx8JD3M7dX2UKGgGaAloD0MIZaVJKejVYECUhpRSlGgVTegDaBZHQIXD4dCE6DJ1fZQoaAZoCWgPQwgvGcdI9qgvQJSGlFKUaBVLwmgWR0CFy1hzeXRgdX2UKGgGaAloD0MIiuYBLPLfYkCUhpRSlGgVTegDaBZHQIXaLl5nlGR1fZQoaAZoCWgPQwhT0O0ljUtjQJSGlFKUaBVN6ANoFkdAhdzuqm0mdHV9lChoBmgJaA9DCN/+XDRkemBAlIaUUpRoFU3oA2gWR0CF3TbVSXMRdX2UKGgGaAloD0MIi4nNx7VnZECUhpRSlGgVTegDaBZHQIXor17IDHR1fZQoaAZoCWgPQwg91owM8gNqQJSGlFKUaBVNNQFoFkdAheyNB4Uvf3V9lChoBmgJaA9DCB1WuOUjBF5AlIaUUpRoFU3oA2gWR0CF/9qkdmxudWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 124,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}