--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/Phi-3-mini-4k-instruct datasets: - shujatoor/ner_instruct-chat model-index: - name: checkpoint_dir results: [] --- # phi3nedtuned-ner This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6568 ## For Inference ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline config = PeftConfig.from_pretrained("shujatoor/phi3nedtuned-ner") model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3-mini-4k-instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True, ) model = PeftModel.from_pretrained(model, "shujatoor/phi3nedtuned-ner") model.config.to_json_file('adapter_config.json') torch.random.manual_seed(0) tokenizer = AutoTokenizer.from_pretrained("shujatoor/phi3nedtuned-ner") text = "Hasan Pharmacy Madina Market Mustafa Chowk.PCsiR Staff Society College Road, Lahore Drug Lic#441-A/AIT No.1023874 24/04/202422:18:03 M/s*CASH SALES-WALKING CUST Remarks: Ref.: Item Name Qty Price Total Advant Tab 16mg 28 37.50 1050.00 Kepra 500mg Tab 30 85.91 2577.30 Kabrokin 200mg 240 10.67 2560.80 Tab Myteka 10mg Tab 14 37.71 527.94 Cipocain Ear/drops 1 168.00 168.00 Medicam T/paste 1 240.00 240.00 100gm Total items:6 Gross Total : 7,124.04 Disc: 523.68 DR.HASAN Net Total. 6,600.00 (Computer Software developed by Abuzar Consultancy Ph 042-37426911-15)." qs = f'{text} What is the drug license number of the store??' print('Question:',qs, '\n') messages = [ #{"role": "system", "content": "Only output the answer, nothing else"}, {"role": "user", "content": qs}, ] pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 512, "return_full_text": False, #"temperature": 0.0, "do_sample": False, } output = pipe(messages, **generation_args) print('Answer:', output[0]['generated_text'], '\n') """ expected answer: Answer: 441-A/AIT No.1023874 """ ``` ## Intended uses & limitations Named Entity Recognition (NER) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1 ### License The model is licensed under the MIT license.