|
import torch |
|
from transformers import BartForConditionalGeneration, BartTokenizer, GPT2LMHeadModel, GPT2Tokenizer |
|
import argparse |
|
import sys |
|
|
|
class AdvancedSummarizer: |
|
def __init__(self, model_name="facebook/bart-large-cnn"): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model = BartForConditionalGeneration.from_pretrained(model_name).to(self.device) |
|
self.tokenizer = BartTokenizer.from_pretrained(model_name) |
|
|
|
def summarize(self, text, max_length=150, min_length=50, length_penalty=2.0, num_beams=4): |
|
inputs = self.tokenizer([text], max_length=1024, return_tensors="pt", truncation=True) |
|
inputs = inputs.to(self.device) |
|
|
|
summary_ids = self.model.generate( |
|
inputs["input_ids"], |
|
num_beams=num_beams, |
|
max_length=max_length, |
|
min_length=min_length, |
|
length_penalty=length_penalty |
|
) |
|
|
|
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
return summary |
|
|
|
def main_summarizer(): |
|
|
|
summarizer = AdvancedSummarizer() |
|
text = """Your text here""" |
|
summary = summarizer.summarize(text) |
|
print("Summary:") |
|
print(summary) |
|
|
|
class AdvancedTextGenerator: |
|
def __init__(self, model_name="gpt2-medium"): |
|
try: |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {self.device}") |
|
self.model = GPT2LMHeadModel.from_pretrained(model_name).to(self.device) |
|
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
except Exception as e: |
|
print(f"Error initializing the model: {e}") |
|
sys.exit(1) |
|
|
|
def generate_text(self, prompt, max_length=100, num_return_sequences=1, |
|
temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.0): |
|
try: |
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device) |
|
|
|
output_sequences = self.model.generate( |
|
input_ids=input_ids, |
|
max_length=max_length + len(input_ids[0]), |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
num_return_sequences=num_return_sequences, |
|
) |
|
|
|
generated_sequences = [] |
|
for generated_sequence in output_sequences: |
|
text = self.tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) |
|
total_sequence = text[len(self.tokenizer.decode(input_ids[0], clean_up_tokenization_spaces=True)):] |
|
generated_sequences.append(total_sequence) |
|
|
|
return generated_sequences |
|
except Exception as e: |
|
return [f"Error during text generation: {e}"] |
|
|
|
def main_generator(): |
|
parser = argparse.ArgumentParser(description="Advanced Text Generator") |
|
parser.add_argument("--prompt", type=str, help="Starting prompt for text generation") |
|
parser.add_argument("--max_length", type=int, default=100, help="Maximum length of generated text") |
|
parser.add_argument("--num_sequences", type=int, default=1, help="Number of sequences to generate") |
|
parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for sampling") |
|
parser.add_argument("--top_k", type=int, default=50, help="Top-k sampling parameter") |
|
parser.add_argument("--top_p", type=float, default=0.95, help="Top-p sampling parameter") |
|
parser.add_argument("--repetition_penalty", type=float, default=1.0, help="Repetition penalty") |
|
|
|
args = parser.parse_args() |
|
|
|
generator = AdvancedTextGenerator() |
|
|
|
if args.prompt: |
|
prompt = args.prompt |
|
else: |
|
print("Please enter the prompt for text generation:") |
|
prompt = input().strip() |
|
|
|
generated_texts = generator.generate_text( |
|
prompt, |
|
max_length=args.max_length, |
|
num_return_sequences=args.num_sequences, |
|
temperature=args.temperature, |
|
top_k=args.top_k, |
|
top_p=args.top_p, |
|
repetition_penalty=args.repetition_penalty |
|
) |
|
|
|
print("\nGenerated Text(s):") |
|
for i, text in enumerate(generated_texts, 1): |
|
print(f"\n--- Sequence {i} ---") |
|
print(text) |
|
|
|
if __name__ == "__main__": |
|
main_summarizer() |
|
main_generator() |