File size: 2,061 Bytes
bbc6910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- load_train
metrics:
- accuracy
model-index:
- name: thucnews
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: load_train
type: load_train
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9433
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# thucnews
This model is a fine-tuned version of [hfl/rbt6](https://huggingface.co/hfl/rbt6) on the load_train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3191
- Accuracy: 0.9433
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2038 | 1.0 | 704 | 0.2018 | 0.9332 |
| 0.1403 | 2.0 | 1408 | 0.1829 | 0.9406 |
| 0.0894 | 3.0 | 2112 | 0.2073 | 0.9419 |
| 0.056 | 4.0 | 2816 | 0.2228 | 0.9408 |
| 0.0321 | 5.0 | 3520 | 0.2689 | 0.9417 |
| 0.0209 | 6.0 | 4224 | 0.2819 | 0.9431 |
| 0.0099 | 7.0 | 4928 | 0.3131 | 0.9421 |
| 0.0057 | 8.0 | 5632 | 0.3191 | 0.9433 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
|