--- base_model: google/gemma-3-1b-it library_name: transformers model_name: gemma-3-1b-tool-use tags: - generated_from_trainer - trl - sft licence: license datasets: - shawhin/tool-use-finetuning --- # Model Card for gemma-3-1b-tool-use This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) for function calling. The code and other resources for this project are linked below. It has been trained using [TRL](https://github.com/huggingface/trl). Resources: - [YouTube Video](https://youtu.be/fAFJYbtTsC0) - [Blog Post](https://medium.com/@shawhin/fine-tuning-llms-for-tool-use-5f1db03d7c55) - [GitHub Repo](https://github.com/ShawhinT/llm-tool-use-ft) - [Training Data](https://huggingface.co/datasets/shawhin/tool-use-finetuning) ## Quick start ```python from transformers import pipeline question = "What day of the week was Nov 4 1998?" generator = pipeline("text-generation", model="shawhin/gemma-3-1b-tool-use", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.1 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```