--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4448 - Accuracy: 0.8452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.3498 | 0.1284 | 19 | 2.0894 | 0.2143 | | 1.9304 | 1.1284 | 38 | 1.5131 | 0.4857 | | 1.099 | 2.1284 | 57 | 0.8322 | 0.6857 | | 0.4725 | 3.1284 | 76 | 0.5528 | 0.7714 | | 0.3629 | 4.1284 | 95 | 0.3822 | 0.8571 | | 0.196 | 5.1284 | 114 | 0.3011 | 0.9143 | | 0.1357 | 6.1284 | 133 | 0.2539 | 0.9143 | | 0.0847 | 7.1014 | 148 | 0.1923 | 0.9429 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0