a2c-AntBulletEnv-v0 / config.json
shahafw's picture
Initial commit
0a06cce
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d78ab96c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d78ab9750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d78ab97e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d78ab9870>", "_build": "<function ActorCriticPolicy._build at 0x7f2d78ab9900>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d78ab9990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2d78ab9a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d78ab9ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d78ab9b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d78ab9bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d78ab9c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d78ab9cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2d78ab5ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686425669672798053, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMK4h7/+mSe/1GklP3aqar9efzO/FlPRPdCXPr69oLA6UF54P9mcK7694s6+RyGavNJlej8rqde9sIE6P8tTH726dBg/nVvivfMfCj8AcQK7fCUeOmoamb0jX+i+u4NQvRWkRD9aiQU/lgCyPr3IBD/wbU1AGfozvziSJT+pcVy/lR76vlffLD5Bs46+kQNjPqSWlz6Jr86+C+ogwISkCj/anQ2+cqeOPmtbLkDVKUu/KA+UPy0fxz7gyA1ADZNxv+aQFT097IG+ucQwwPNiPj+Fo6a/02L1v2YWOMDGxva/ZMWYvzyQkL6HcRk/fjVTv9K+Lr+cqUs9sMBevlLwIj2KjZU/8VFxPbeGA79n+oC8uAdfP1BjDz0Ay0Y/WhdQPVilhz/gQjI9W7kPP/y1Nz2rQle+QE+xPAclCL9qU1e8FaREP1qJBT+WALI+vcgEP+opyL/NVIm+hJsYP51icb956Sy/pANzPS13eL4ZPkE9py2FP2z7JbzniDS/OyvmvNmGiT85G1s8viZ3P1RKv7wVsq0/3myAPWqPOj+QcBs7Sl0KvnhtCD0MBzO/wLVlvRWkRD9aiQU/lgCyPr3IBD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA1B7c1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyypuvQAAAACfZuW/AAAAABnJPT0AAAAAm+PpPwAAAAAKRGK8AAAAADx49z8AAAAATdkBPQAAAAAO2tm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAstE2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA/SGjwAAAAAEK/ovwAAAAAOB2e9AAAAAFHO+j8AAAAAVBwRPgAAAADB7O0/AAAAANQZQ70AAAAA4tX3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDwlDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBINQg+AAAAAHdr678AAAAAyzKkPQAAAAAO1t4/AAAAACEiCr0AAAAA1EH0PwAAAAC2Gge+AAAAABrM5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABt6Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhW/ivQAAAACOyey/AAAAAMv9i70AAAAAI+bbPwAAAAAN+DI9AAAAACMc3T8AAAAAHJ8AvgAAAAAVAfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIoIJMxoIv+MAWyUTegDjAF0lEdAq60HPVurInV9lChoBkdAisA6lUIcBGgHTegDaAhHQKu12LWqcVh1fZQoaAZHQIrLQhW5paloB03oA2gIR0CrtslxXGOudX2UKGgGR0CJSpoi9qUNaAdN6ANoCEdAq7moJzDGcXV9lChoBkdAhSgQ7kn1F2gHTegDaAhHQKu50yMUAT91fZQoaAZHQIgLM+V1Oj9oB03oA2gIR0CrxAtHQQcxdX2UKGgGR0CJ9o6WgOBlaAdN6ANoCEdAq8WHR7Z393V9lChoBkdAiFlJ3gUDdWgHTegDaAhHQKvKK2E0zj51fZQoaAZHQIlnjCm/FitoB03oA2gIR0Crymj0+TvBdX2UKGgGR0CGKea2nbZfaAdN6ANoCEdAq9QfDk2gnXV9lChoBkdAh7rpsXSBsmgHTegDaAhHQKvVHL0z0pV1fZQoaAZHQImze+XZ5A1oB03oA2gIR0Cr2AbvgFX8dX2UKGgGR0CH0FwEyLydaAdN6ANoCEdAq9gt+y7f53V9lChoBkdAhepngxagVWgHTegDaAhHQKvh78F6iTN1fZQoaAZHQIf8IHiWE9NoB03oA2gIR0Cr40aF23a0dX2UKGgGR0CIkiIUJv5yaAdN6ANoCEdAq+fHKlpGnXV9lChoBkdAiI2bNSqEOGgHTegDaAhHQKvoBQswtap1fZQoaAZHQIigdktmL+BoB03oA2gIR0Cr8Z96C17ZdX2UKGgGR0CIyc0Sh8IBaAdN6ANoCEdAq/KQEbHZK3V9lChoBkdAhQfgQYk3TGgHTegDaAhHQKv1aV45cTt1fZQoaAZHQImQA6XBxgloB03oA2gIR0Cr9ZgMUh3adX2UKGgGR0CF9pTS9du6aAdN6ANoCEdAq/6PNRm9QHV9lChoBkdAhaNfcN6PbWgHTegDaAhHQKv//Uy57PZ1fZQoaAZHQIlVynHeaa1oB03oA2gIR0CsBGMEzO5bdX2UKGgGR0CGtjFpfx+baAdN6ANoCEdArASd1nuiOHV9lChoBkdAh2iTyauwHWgHTegDaAhHQKwPPiw0O3F1fZQoaAZHQIcn3KKYRd1oB03oA2gIR0CsEC0SZjQRdX2UKGgGR0CLUWNOM2m6aAdN6ANoCEdArBMXuE25x3V9lChoBkdAioC5VfeDWmgHTegDaAhHQKwTPQj2SMd1fZQoaAZHQIMcm74BV+9oB03oA2gIR0CsHGE6cRUWdX2UKGgGR0CN2DbJOnEVaAdN6ANoCEdArB3WwTufEnV9lChoBkdAi8uU4rBj4GgHTegDaAhHQKwjTfLLZBd1fZQoaAZHQI4qy8QI2O1oB03oA2gIR0CsI5yp71IzdX2UKGgGR0CLd5sUqQRxaAdN6ANoCEdArDGZo0ygw3V9lChoBkdAjcXIDxLCemgHTegDaAhHQKwyhkI5YHR1fZQoaAZHQIuzOz2OAAhoB03oA2gIR0CsNWqRU3n7dX2UKGgGR0CMXqtI065oaAdN6ANoCEdArDWR7CzkZXV9lChoBkdAibtOEug6EWgHTegDaAhHQKw+fLV4HHF1fZQoaAZHQI3MvqNZNfxoB03oA2gIR0CsP2WiUPhAdX2UKGgGR0CNltTCLuQZaAdN6ANoCEdArEJiAH3UQXV9lChoBkdAipr6h6By0mgHTegDaAhHQKxChw7T2Fp1fZQoaAZHQI7ZzgIhQnBoB03oA2gIR0CsT5O0kWykdX2UKGgGR0COxVVT72tdaAdN6ANoCEdArFCFKoQ4CXV9lChoBkdAj3z2a2F36mgHTegDaAhHQKxTWMbWEsd1fZQoaAZHQI56FQdjoZBoB03oA2gIR0CsU33hXKbKdX2UKGgGR0CMO1mU4aP0aAdN6ANoCEdArFxvHmzSkXV9lChoBkdAiV0IZQ53kmgHTegDaAhHQKxdXRF7Uod1fZQoaAZHQIq6Iu5BkZtoB03oA2gIR0CsYC+7L+xXdX2UKGgGR0CLBOz+FUQ1aAdN6ANoCEdArGBS6g/Ts3V9lChoBkdAhoQe7tiQT2gHTegDaAhHQKxsWujh1kl1fZQoaAZHQIXSHwsoUi9oB03oA2gIR0Csbd8NQTEjdX2UKGgGR0CL9F4iX6ZZaAdN6ANoCEdArHDxyZKFqXV9lChoBkdAi8+jtXxOL2gHTegDaAhHQKxxGNedCmd1fZQoaAZHQI0cbdxhlUZoB03oA2gIR0CsehBOP/70dX2UKGgGR0CLXKICU5dXaAdN6ANoCEdArHsCzqrzXnV9lChoBkdAjDZt6X0GvGgHTegDaAhHQKx97QQ+UyJ1fZQoaAZHQItVhesxO+JoB03oA2gIR0CsfhEauOjqdX2UKGgGR0CNk/cfNiYtaAdN6ANoCEdArIk/OGCZnnV9lChoBkdAi168ZUDMeWgHTegDaAhHQKyKwg6ltTF1fZQoaAZHQI2uQcrAgxJoB03oA2gIR0Csjr3wLE1mdX2UKGgGR0CMIFev6j33aAdN6ANoCEdArI7hc1O0s3V9lChoBkdAikPaIN3GGWgHTegDaAhHQKyX0c2BJ7N1fZQoaAZHQIxMHqiXY15oB03oA2gIR0CsmMBT4tYkdX2UKGgGR0CLpVvoePq+aAdN6ANoCEdArJuZ/qgRLHV9lChoBkdAif9DV6NVBGgHTegDaAhHQKybw5U96kZ1fZQoaAZHQIY8gSBbwBpoB03oA2gIR0CspekV32VWdX2UKGgGR0CLX4jj7yhBaAdN6ANoCEdArKdrLt/nXHV9lChoBkdAi7FauwHJLmgHTegDaAhHQKyr8Dklu3t1fZQoaAZHQIvWCOR1X/5oB03oA2gIR0CsrDJZfUnYdX2UKGgGR0CM2SO8TSLJaAdN6ANoCEdArLUsytV7yHV9lChoBkdAi6B5+x4Y8GgHTegDaAhHQKy2Jv7WNFV1fZQoaAZHQIzGTHfdhy9oB03oA2gIR0CsuRCcXm/4dX2UKGgGR0CLx7GR3eN2aAdN6ANoCEdArLk7+rELpnV9lChoBkdAiu8bCJoCdWgHTegDaAhHQKzDWURFqi51fZQoaAZHQIt+bwlSjxloB03oA2gIR0CsxLo73fygdX2UKGgGR0CLu4Z8a4tpaAdN6ANoCEdArMk7LpzLfXV9lChoBkdAjI61GLDQ7mgHTegDaAhHQKzJdllK9PF1fZQoaAZHQIr+BjOLR8doB03oA2gIR0Cs001kMCtBdX2UKGgGR0CLYLeC04R3aAdN6ANoCEdArNQ6i22G7HV9lChoBkdAi2MErPMSsmgHTegDaAhHQKzXGokRjBl1fZQoaAZHQIuH4/1QIldoB03oA2gIR0Cs10RDLKV6dX2UKGgGR0CLE3cxCY1HaAdN6ANoCEdArOAqzw+dLHV9lChoBkdAhhq3UhFEzGgHTegDaAhHQKzhiptJnQJ1fZQoaAZHQIWBt2ki2UloB03oA2gIR0Cs5daCtihGdX2UKGgGR0CJVyX8fmtAaAdN6ANoCEdArOYaAFxGUnV9lChoBkdAiKlnVwxWUGgHTegDaAhHQKzw0HARChN1fZQoaAZHQIhpHmgam41oB03oA2gIR0Cs8bw6QvHtdX2UKGgGR0CMQU3EQ5FPaAdN6ANoCEdArPSyzZ6D5HV9lChoBkdAiVhIybhFVmgHTegDaAhHQKz01/OMVDd1fZQoaAZHQImu6b8WKuVoB03oA2gIR0Cs/a4oAn2JdX2UKGgGR0CMPJjqfOD8aAdN6ANoCEdArP6k/0NBnnV9lChoBkdAjoEEtdzGP2gHTegDaAhHQK0CwZPVNHp1fZQoaAZHQI35eocaOxVoB03oA2gIR0CtAvmrbQC0dX2UKGgGR0CNzl8MNMGpaAdN6ANoCEdArQ53cWTHKnV9lChoBkdAjNmGNzbN8mgHTegDaAhHQK0PZdfsu4B1fZQoaAZHQI2R3XPJJXhoB03oA2gIR0CtElJBPbfxdX2UKGgGR0CL+ZCqp97XaAdN6ANoCEdArRJ2tW+49XV9lChoBkdAjZknyVfNRmgHTegDaAhHQK0bP/Yrauh1fZQoaAZHQIuAGdAgPmRoB03oA2gIR0CtHC0tI066dX2UKGgGR0CN++G/N7jUaAdN6ANoCEdArR92rMkhR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}