!pip install gradio import gradio as gr import pickle import numpy as np from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Load iris dataset and train the model iris = load_iris() X = iris.data y = iris.target model = DecisionTreeClassifier() model.fit(X, y) # Save the model with open('model.pkl', 'wb') as f: pickle.dump(model, f) # Load the trained model with open('model.pkl', 'rb') as f: model = pickle.load(f) def predict(sepal_length, sepal_width, petal_length, petal_width): input_data = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) prediction = model.predict(input_data) return iris.target_names[prediction[0]] interface = gr.Interface( fn=predict, inputs=["number", "number", "number", "number"], outputs="text", title="Iris Flower Classifier", description="Enter the features of the iris flower to predict its species." ) interface.launch()