shadyy commited on
Commit
555b1d2
·
1 Parent(s): 81e5c0e

Upload 8 files

Browse files
README.md CHANGED
@@ -1,3 +1,218 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+ - PEFT 0.6.3.dev0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "up_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "down_proj",
28
+ "lm_head",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM"
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59bc1cc013d8c788d37cdb06720fb4dd06aaed94360dca2f59f86a96e8729c5
3
+ size 864513616
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afb7bf3b2d006016605a57a695f47c487c7b6dcf45665cd1cc7d6bc7cd4890af
3
+ size 170951516
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e857436592ff676174e03d082869ffdfe96431bfc401555e8c6adc65dc1158d9
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d6d865d6518a82dd54bb09f8f02628ebe31ca8be097a65ef5c8faff7622969
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 20.0,
5
+ "eval_steps": 25,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.5,
13
+ "learning_rate": 2.43993993993994e-05,
14
+ "loss": 0.8345,
15
+ "step": 25
16
+ },
17
+ {
18
+ "epoch": 0.5,
19
+ "eval_loss": 0.1825820505619049,
20
+ "eval_runtime": 19.7988,
21
+ "eval_samples_per_second": 5.051,
22
+ "eval_steps_per_second": 0.657,
23
+ "step": 25
24
+ },
25
+ {
26
+ "epoch": 1.0,
27
+ "learning_rate": 2.3773773773773775e-05,
28
+ "loss": 0.1821,
29
+ "step": 50
30
+ },
31
+ {
32
+ "epoch": 1.0,
33
+ "eval_loss": 0.130362868309021,
34
+ "eval_runtime": 19.6459,
35
+ "eval_samples_per_second": 5.09,
36
+ "eval_steps_per_second": 0.662,
37
+ "step": 50
38
+ },
39
+ {
40
+ "epoch": 1.5,
41
+ "learning_rate": 2.314814814814815e-05,
42
+ "loss": 0.1276,
43
+ "step": 75
44
+ },
45
+ {
46
+ "epoch": 1.5,
47
+ "eval_loss": 0.11436057090759277,
48
+ "eval_runtime": 19.6323,
49
+ "eval_samples_per_second": 5.094,
50
+ "eval_steps_per_second": 0.662,
51
+ "step": 75
52
+ },
53
+ {
54
+ "epoch": 2.0,
55
+ "learning_rate": 2.2522522522522523e-05,
56
+ "loss": 0.127,
57
+ "step": 100
58
+ },
59
+ {
60
+ "epoch": 2.0,
61
+ "eval_loss": 0.09521650522947311,
62
+ "eval_runtime": 20.0255,
63
+ "eval_samples_per_second": 4.994,
64
+ "eval_steps_per_second": 0.649,
65
+ "step": 100
66
+ },
67
+ {
68
+ "epoch": 2.5,
69
+ "learning_rate": 2.18968968968969e-05,
70
+ "loss": 0.1018,
71
+ "step": 125
72
+ },
73
+ {
74
+ "epoch": 2.5,
75
+ "eval_loss": 0.08395165205001831,
76
+ "eval_runtime": 19.6593,
77
+ "eval_samples_per_second": 5.087,
78
+ "eval_steps_per_second": 0.661,
79
+ "step": 125
80
+ },
81
+ {
82
+ "epoch": 3.0,
83
+ "learning_rate": 2.1271271271271275e-05,
84
+ "loss": 0.0971,
85
+ "step": 150
86
+ },
87
+ {
88
+ "epoch": 3.0,
89
+ "eval_loss": 0.08126174658536911,
90
+ "eval_runtime": 19.9094,
91
+ "eval_samples_per_second": 5.023,
92
+ "eval_steps_per_second": 0.653,
93
+ "step": 150
94
+ },
95
+ {
96
+ "epoch": 3.5,
97
+ "learning_rate": 2.0645645645645647e-05,
98
+ "loss": 0.0837,
99
+ "step": 175
100
+ },
101
+ {
102
+ "epoch": 3.5,
103
+ "eval_loss": 0.06755229830741882,
104
+ "eval_runtime": 19.8387,
105
+ "eval_samples_per_second": 5.041,
106
+ "eval_steps_per_second": 0.655,
107
+ "step": 175
108
+ },
109
+ {
110
+ "epoch": 4.0,
111
+ "learning_rate": 2.0020020020020023e-05,
112
+ "loss": 0.0779,
113
+ "step": 200
114
+ },
115
+ {
116
+ "epoch": 4.0,
117
+ "eval_loss": 0.06234545633196831,
118
+ "eval_runtime": 20.1113,
119
+ "eval_samples_per_second": 4.972,
120
+ "eval_steps_per_second": 0.646,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 4.5,
125
+ "learning_rate": 1.9394394394394395e-05,
126
+ "loss": 0.0638,
127
+ "step": 225
128
+ },
129
+ {
130
+ "epoch": 4.5,
131
+ "eval_loss": 0.059754613786935806,
132
+ "eval_runtime": 20.0532,
133
+ "eval_samples_per_second": 4.987,
134
+ "eval_steps_per_second": 0.648,
135
+ "step": 225
136
+ },
137
+ {
138
+ "epoch": 5.0,
139
+ "learning_rate": 1.8768768768768768e-05,
140
+ "loss": 0.0713,
141
+ "step": 250
142
+ },
143
+ {
144
+ "epoch": 5.0,
145
+ "eval_loss": 0.05015714094042778,
146
+ "eval_runtime": 19.9208,
147
+ "eval_samples_per_second": 5.02,
148
+ "eval_steps_per_second": 0.653,
149
+ "step": 250
150
+ },
151
+ {
152
+ "epoch": 5.5,
153
+ "learning_rate": 1.8143143143143144e-05,
154
+ "loss": 0.0507,
155
+ "step": 275
156
+ },
157
+ {
158
+ "epoch": 5.5,
159
+ "eval_loss": 0.04916694015264511,
160
+ "eval_runtime": 20.02,
161
+ "eval_samples_per_second": 4.995,
162
+ "eval_steps_per_second": 0.649,
163
+ "step": 275
164
+ },
165
+ {
166
+ "epoch": 6.0,
167
+ "learning_rate": 1.7517517517517516e-05,
168
+ "loss": 0.0613,
169
+ "step": 300
170
+ },
171
+ {
172
+ "epoch": 6.0,
173
+ "eval_loss": 0.04311186820268631,
174
+ "eval_runtime": 19.861,
175
+ "eval_samples_per_second": 5.035,
176
+ "eval_steps_per_second": 0.655,
177
+ "step": 300
178
+ },
179
+ {
180
+ "epoch": 6.5,
181
+ "learning_rate": 1.6891891891891892e-05,
182
+ "loss": 0.046,
183
+ "step": 325
184
+ },
185
+ {
186
+ "epoch": 6.5,
187
+ "eval_loss": 0.04042712226510048,
188
+ "eval_runtime": 20.213,
189
+ "eval_samples_per_second": 4.947,
190
+ "eval_steps_per_second": 0.643,
191
+ "step": 325
192
+ },
193
+ {
194
+ "epoch": 7.0,
195
+ "learning_rate": 1.6266266266266268e-05,
196
+ "loss": 0.0487,
197
+ "step": 350
198
+ },
199
+ {
200
+ "epoch": 7.0,
201
+ "eval_loss": 0.036048341542482376,
202
+ "eval_runtime": 19.868,
203
+ "eval_samples_per_second": 5.033,
204
+ "eval_steps_per_second": 0.654,
205
+ "step": 350
206
+ },
207
+ {
208
+ "epoch": 7.5,
209
+ "learning_rate": 1.564064064064064e-05,
210
+ "loss": 0.0402,
211
+ "step": 375
212
+ },
213
+ {
214
+ "epoch": 7.5,
215
+ "eval_loss": 0.03601359948515892,
216
+ "eval_runtime": 19.7933,
217
+ "eval_samples_per_second": 5.052,
218
+ "eval_steps_per_second": 0.657,
219
+ "step": 375
220
+ },
221
+ {
222
+ "epoch": 8.0,
223
+ "learning_rate": 1.5015015015015016e-05,
224
+ "loss": 0.0433,
225
+ "step": 400
226
+ },
227
+ {
228
+ "epoch": 8.0,
229
+ "eval_loss": 0.03563099354505539,
230
+ "eval_runtime": 19.939,
231
+ "eval_samples_per_second": 5.015,
232
+ "eval_steps_per_second": 0.652,
233
+ "step": 400
234
+ },
235
+ {
236
+ "epoch": 8.5,
237
+ "learning_rate": 1.438938938938939e-05,
238
+ "loss": 0.0356,
239
+ "step": 425
240
+ },
241
+ {
242
+ "epoch": 8.5,
243
+ "eval_loss": 0.03060692362487316,
244
+ "eval_runtime": 20.0337,
245
+ "eval_samples_per_second": 4.992,
246
+ "eval_steps_per_second": 0.649,
247
+ "step": 425
248
+ },
249
+ {
250
+ "epoch": 9.0,
251
+ "learning_rate": 1.3763763763763765e-05,
252
+ "loss": 0.0378,
253
+ "step": 450
254
+ },
255
+ {
256
+ "epoch": 9.0,
257
+ "eval_loss": 0.03127852827310562,
258
+ "eval_runtime": 19.9074,
259
+ "eval_samples_per_second": 5.023,
260
+ "eval_steps_per_second": 0.653,
261
+ "step": 450
262
+ },
263
+ {
264
+ "epoch": 9.5,
265
+ "learning_rate": 1.3138138138138139e-05,
266
+ "loss": 0.0332,
267
+ "step": 475
268
+ },
269
+ {
270
+ "epoch": 9.5,
271
+ "eval_loss": 0.029647212475538254,
272
+ "eval_runtime": 19.6987,
273
+ "eval_samples_per_second": 5.076,
274
+ "eval_steps_per_second": 0.66,
275
+ "step": 475
276
+ },
277
+ {
278
+ "epoch": 10.0,
279
+ "learning_rate": 1.2512512512512515e-05,
280
+ "loss": 0.0346,
281
+ "step": 500
282
+ },
283
+ {
284
+ "epoch": 10.0,
285
+ "eval_loss": 0.028394926339387894,
286
+ "eval_runtime": 19.9244,
287
+ "eval_samples_per_second": 5.019,
288
+ "eval_steps_per_second": 0.652,
289
+ "step": 500
290
+ },
291
+ {
292
+ "epoch": 10.5,
293
+ "learning_rate": 1.1886886886886887e-05,
294
+ "loss": 0.0303,
295
+ "step": 525
296
+ },
297
+ {
298
+ "epoch": 10.5,
299
+ "eval_loss": 0.02781710773706436,
300
+ "eval_runtime": 19.8483,
301
+ "eval_samples_per_second": 5.038,
302
+ "eval_steps_per_second": 0.655,
303
+ "step": 525
304
+ },
305
+ {
306
+ "epoch": 11.0,
307
+ "learning_rate": 1.1261261261261261e-05,
308
+ "loss": 0.0322,
309
+ "step": 550
310
+ },
311
+ {
312
+ "epoch": 11.0,
313
+ "eval_loss": 0.02787485532462597,
314
+ "eval_runtime": 20.0578,
315
+ "eval_samples_per_second": 4.986,
316
+ "eval_steps_per_second": 0.648,
317
+ "step": 550
318
+ },
319
+ {
320
+ "epoch": 11.5,
321
+ "learning_rate": 1.0635635635635637e-05,
322
+ "loss": 0.0311,
323
+ "step": 575
324
+ },
325
+ {
326
+ "epoch": 11.5,
327
+ "eval_loss": 0.026974568143486977,
328
+ "eval_runtime": 20.0373,
329
+ "eval_samples_per_second": 4.991,
330
+ "eval_steps_per_second": 0.649,
331
+ "step": 575
332
+ },
333
+ {
334
+ "epoch": 12.0,
335
+ "learning_rate": 1.0010010010010011e-05,
336
+ "loss": 0.0295,
337
+ "step": 600
338
+ },
339
+ {
340
+ "epoch": 12.0,
341
+ "eval_loss": 0.02675173431634903,
342
+ "eval_runtime": 20.0507,
343
+ "eval_samples_per_second": 4.987,
344
+ "eval_steps_per_second": 0.648,
345
+ "step": 600
346
+ },
347
+ {
348
+ "epoch": 12.5,
349
+ "learning_rate": 9.384384384384384e-06,
350
+ "loss": 0.0276,
351
+ "step": 625
352
+ },
353
+ {
354
+ "epoch": 12.5,
355
+ "eval_loss": 0.026049189269542694,
356
+ "eval_runtime": 19.7691,
357
+ "eval_samples_per_second": 5.058,
358
+ "eval_steps_per_second": 0.658,
359
+ "step": 625
360
+ },
361
+ {
362
+ "epoch": 13.0,
363
+ "learning_rate": 8.758758758758758e-06,
364
+ "loss": 0.0303,
365
+ "step": 650
366
+ },
367
+ {
368
+ "epoch": 13.0,
369
+ "eval_loss": 0.025803018361330032,
370
+ "eval_runtime": 20.0235,
371
+ "eval_samples_per_second": 4.994,
372
+ "eval_steps_per_second": 0.649,
373
+ "step": 650
374
+ },
375
+ {
376
+ "epoch": 13.5,
377
+ "learning_rate": 8.133133133133134e-06,
378
+ "loss": 0.0258,
379
+ "step": 675
380
+ },
381
+ {
382
+ "epoch": 13.5,
383
+ "eval_loss": 0.024792619049549103,
384
+ "eval_runtime": 20.0588,
385
+ "eval_samples_per_second": 4.985,
386
+ "eval_steps_per_second": 0.648,
387
+ "step": 675
388
+ },
389
+ {
390
+ "epoch": 14.0,
391
+ "learning_rate": 7.507507507507508e-06,
392
+ "loss": 0.0277,
393
+ "step": 700
394
+ },
395
+ {
396
+ "epoch": 14.0,
397
+ "eval_loss": 0.024141492322087288,
398
+ "eval_runtime": 20.0508,
399
+ "eval_samples_per_second": 4.987,
400
+ "eval_steps_per_second": 0.648,
401
+ "step": 700
402
+ },
403
+ {
404
+ "epoch": 14.5,
405
+ "learning_rate": 6.881881881881882e-06,
406
+ "loss": 0.0253,
407
+ "step": 725
408
+ },
409
+ {
410
+ "epoch": 14.5,
411
+ "eval_loss": 0.024363957345485687,
412
+ "eval_runtime": 20.0138,
413
+ "eval_samples_per_second": 4.997,
414
+ "eval_steps_per_second": 0.65,
415
+ "step": 725
416
+ },
417
+ {
418
+ "epoch": 15.0,
419
+ "learning_rate": 6.256256256256257e-06,
420
+ "loss": 0.0272,
421
+ "step": 750
422
+ },
423
+ {
424
+ "epoch": 15.0,
425
+ "eval_loss": 0.02408401481807232,
426
+ "eval_runtime": 20.0671,
427
+ "eval_samples_per_second": 4.983,
428
+ "eval_steps_per_second": 0.648,
429
+ "step": 750
430
+ },
431
+ {
432
+ "epoch": 15.5,
433
+ "learning_rate": 5.630630630630631e-06,
434
+ "loss": 0.0244,
435
+ "step": 775
436
+ },
437
+ {
438
+ "epoch": 15.5,
439
+ "eval_loss": 0.024250097572803497,
440
+ "eval_runtime": 20.0673,
441
+ "eval_samples_per_second": 4.983,
442
+ "eval_steps_per_second": 0.648,
443
+ "step": 775
444
+ },
445
+ {
446
+ "epoch": 16.0,
447
+ "learning_rate": 5.005005005005006e-06,
448
+ "loss": 0.027,
449
+ "step": 800
450
+ },
451
+ {
452
+ "epoch": 16.0,
453
+ "eval_loss": 0.02365710586309433,
454
+ "eval_runtime": 19.9778,
455
+ "eval_samples_per_second": 5.006,
456
+ "eval_steps_per_second": 0.651,
457
+ "step": 800
458
+ },
459
+ {
460
+ "epoch": 16.5,
461
+ "learning_rate": 4.379379379379379e-06,
462
+ "loss": 0.0243,
463
+ "step": 825
464
+ },
465
+ {
466
+ "epoch": 16.5,
467
+ "eval_loss": 0.023755939677357674,
468
+ "eval_runtime": 20.1906,
469
+ "eval_samples_per_second": 4.953,
470
+ "eval_steps_per_second": 0.644,
471
+ "step": 825
472
+ },
473
+ {
474
+ "epoch": 17.0,
475
+ "learning_rate": 3.753753753753754e-06,
476
+ "loss": 0.0255,
477
+ "step": 850
478
+ },
479
+ {
480
+ "epoch": 17.0,
481
+ "eval_loss": 0.02352030761539936,
482
+ "eval_runtime": 19.829,
483
+ "eval_samples_per_second": 5.043,
484
+ "eval_steps_per_second": 0.656,
485
+ "step": 850
486
+ },
487
+ {
488
+ "epoch": 17.5,
489
+ "learning_rate": 3.1281281281281287e-06,
490
+ "loss": 0.0242,
491
+ "step": 875
492
+ },
493
+ {
494
+ "epoch": 17.5,
495
+ "eval_loss": 0.023568786680698395,
496
+ "eval_runtime": 19.7648,
497
+ "eval_samples_per_second": 5.059,
498
+ "eval_steps_per_second": 0.658,
499
+ "step": 875
500
+ },
501
+ {
502
+ "epoch": 18.0,
503
+ "learning_rate": 2.502502502502503e-06,
504
+ "loss": 0.0248,
505
+ "step": 900
506
+ },
507
+ {
508
+ "epoch": 18.0,
509
+ "eval_loss": 0.02345026656985283,
510
+ "eval_runtime": 20.0421,
511
+ "eval_samples_per_second": 4.99,
512
+ "eval_steps_per_second": 0.649,
513
+ "step": 900
514
+ },
515
+ {
516
+ "epoch": 18.5,
517
+ "learning_rate": 1.876876876876877e-06,
518
+ "loss": 0.0237,
519
+ "step": 925
520
+ },
521
+ {
522
+ "epoch": 18.5,
523
+ "eval_loss": 0.023420894518494606,
524
+ "eval_runtime": 19.882,
525
+ "eval_samples_per_second": 5.03,
526
+ "eval_steps_per_second": 0.654,
527
+ "step": 925
528
+ },
529
+ {
530
+ "epoch": 19.0,
531
+ "learning_rate": 1.2512512512512514e-06,
532
+ "loss": 0.0244,
533
+ "step": 950
534
+ },
535
+ {
536
+ "epoch": 19.0,
537
+ "eval_loss": 0.023358002305030823,
538
+ "eval_runtime": 19.6722,
539
+ "eval_samples_per_second": 5.083,
540
+ "eval_steps_per_second": 0.661,
541
+ "step": 950
542
+ },
543
+ {
544
+ "epoch": 19.5,
545
+ "learning_rate": 6.256256256256257e-07,
546
+ "loss": 0.0233,
547
+ "step": 975
548
+ },
549
+ {
550
+ "epoch": 19.5,
551
+ "eval_loss": 0.02332903817296028,
552
+ "eval_runtime": 19.7534,
553
+ "eval_samples_per_second": 5.062,
554
+ "eval_steps_per_second": 0.658,
555
+ "step": 975
556
+ },
557
+ {
558
+ "epoch": 20.0,
559
+ "learning_rate": 0.0,
560
+ "loss": 0.0238,
561
+ "step": 1000
562
+ },
563
+ {
564
+ "epoch": 20.0,
565
+ "eval_loss": 0.023337021470069885,
566
+ "eval_runtime": 20.0001,
567
+ "eval_samples_per_second": 5.0,
568
+ "eval_steps_per_second": 0.65,
569
+ "step": 1000
570
+ }
571
+ ],
572
+ "logging_steps": 25,
573
+ "max_steps": 1000,
574
+ "num_input_tokens_seen": 0,
575
+ "num_train_epochs": 20,
576
+ "save_steps": 25,
577
+ "total_flos": 4.4210388467712e+16,
578
+ "trial_name": null,
579
+ "trial_params": null
580
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:061cf51e5d7fd9b973f00eb4986e6b5c3d4e707ab6b94679781316b11fdab1f9
3
+ size 4728