File size: 13,348 Bytes
52a6eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import time
import os

# --- Configuration ---
BASE_MODEL_ID = "Qwen/Qwen2.5-7B-Instruct"
# Path to your merged fine-tuned model within the Hugging Face Space
# If 'cineguide-merged' is at the root of your Space repo:
FINETUNED_MODEL_PATH = "cineguide-merged"

# System prompts
SYSTEM_PROMPT_CINEGUIDE = """You are CineGuide, a knowledgeable and friendly movie recommendation assistant. Your goal is to:
1. Provide personalized movie recommendations based on user preferences
2. Give brief, compelling rationales for why you recommend each movie
3. Ask thoughtful follow-up questions to better understand user tastes
4. Maintain an enthusiastic but not overwhelming tone about cinema

When recommending movies, always explain WHY the movie fits their preferences."""

SYSTEM_PROMPT_BASE = "You are a helpful AI assistant."

# --- Model Loading ---
# Cache models globally so they are loaded only once
_models_cache = {}

def get_model_and_tokenizer(model_id_or_path):
    if model_id_or_path in _models_cache:
        return _models_cache[model_id_or_path]

    print(f"Loading model: {model_id_or_path}")
    tokenizer = AutoTokenizer.from_pretrained(model_id_or_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        model_id_or_path,
        torch_dtype=torch.bfloat16, # Use bfloat16 for faster inference
        device_map="auto",          # Automatically distribute across GPUs if available
        trust_remote_code=True,
        # attn_implementation="flash_attention_2" # Optional: if supported by Space hardware & transformers version
    )
    model.eval() # Set to evaluation mode

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.pad_token_id = tokenizer.eos_token_id

    _models_cache[model_id_or_path] = (model, tokenizer)
    print(f"Finished loading: {model_id_or_path}")
    return model, tokenizer

# Pre-load models when the script starts
# This can take time, so Gradio might show a loading screen.
# For Spaces, this happens during the build/startup phase.
print("Pre-loading models...")
try:
    model_base, tokenizer_base = get_model_and_tokenizer(BASE_MODEL_ID)
    print("Base model loaded.")
except Exception as e:
    print(f"Error loading base model: {e}")
    model_base, tokenizer_base = None, None

# Check if fine-tuned model path exists before loading
if os.path.exists(FINETUNED_MODEL_PATH) and os.path.isdir(FINETUNED_MODEL_PATH):
    try:
        model_ft, tokenizer_ft = get_model_and_tokenizer(FINETUNED_MODEL_PATH)
        print("Fine-tuned model loaded.")
    except Exception as e:
        print(f"Error loading fine-tuned model from {FINETUNED_MODEL_PATH}: {e}")
        model_ft, tokenizer_ft = None, None
else:
    print(f"Fine-tuned model path not found: {FINETUNED_MODEL_PATH}. Skipping fine-tuned model.")
    model_ft, tokenizer_ft = None, None
print("Model pre-loading complete.")


# --- Inference Function ---
def generate_chat_response(message: str, chat_history: list, model_type: str):
    if model_type == "base":
        model, tokenizer = model_base, tokenizer_base
        system_prompt = SYSTEM_PROMPT_BASE
    elif model_type == "finetuned":
        model, tokenizer = model_ft, tokenizer_ft
        system_prompt = SYSTEM_PROMPT_CINEGUIDE
    else:
        yield "Invalid model type."
        return

    if model is None or tokenizer is None:
        yield f"Model '{model_type}' is not available."
        return

    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})

    for user_msg, assistant_msg in chat_history:
        conversation.append({"role": "user", "content": user_msg})
        conversation.append({"role": "assistant", "content": assistant_msg})
    conversation.append({"role": "user", "content": message})

    # Apply chat template
    prompt = tokenizer.apply_chat_template(
        conversation,
        tokenize=False,
        add_generation_prompt=True # This adds the <|im_start|>assistant prefix
    )

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1800).to(model.device)
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=512,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )

    # For streaming, run generation in a separate thread
    # For Gradio, we can yield partial results
    # However, TextStreamer prints to stdout. For Gradio, we need to capture.
    
    # Simpler non-streaming approach for direct yield:
    # Remove streamer from generation_kwargs
    # outputs = model.generate(**generation_kwargs_without_streamer)
    # decoded_output = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    # yield decoded_output
    
    # More complex streaming for Gradio:
    full_response = ""
    generated_token_ids = model.generate(
        **inputs,
        max_new_tokens=512,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        repetition_penalty=1.1,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>")]
    )
    
    # Decode only the newly generated tokens
    new_tokens = generated_token_ids[0, inputs['input_ids'].shape[1]:]
    response_text = tokenizer.decode(new_tokens, skip_special_tokens=True).strip()
    response_text = response_text.replace("<|im_end|>", "").strip() # Clean up
    
    # Yield character by character for streaming effect (can be slow for long responses)
    # A better way is to yield chunks. For simplicity, this is char by char.
    for char in response_text:
        full_response += char
        time.sleep(0.005) # Adjust for desired speed
        yield full_response


def respond_base(message, chat_history):
    # chat_history is a list of [user_msg, assistant_msg]
    yield from generate_chat_response(message, chat_history, "base")

def respond_finetuned(message, chat_history):
    yield from generate_chat_response(message, chat_history, "finetuned")


# --- Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # ๐ŸŽฌ CineGuide vs. Base Qwen2.5-7B-Instruct
        Compare the fine-tuned CineGuide movie recommender with the base Qwen2.5-7B-Instruct model.
        Type your movie-related query below and see how each model responds!
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("## ๐Ÿ—ฃ๏ธ Base Qwen2.5-7B-Instruct")
            chatbot_base = gr.Chatbot(label="Base Model Chat", height=500, bubble_full_width=False)
            if model_base is None:
                 gr.Markdown("โš ๏ธ Base model could not be loaded. This chat interface will not work.")

        with gr.Column(scale=1):
            gr.Markdown("## ๐Ÿค– Fine-tuned CineGuide (Qwen2.5-7B)")
            chatbot_ft = gr.Chatbot(label="CineGuide Chat", height=500, bubble_full_width=False)
            if model_ft is None:
                 gr.Markdown("โš ๏ธ Fine-tuned model could not be loaded. This chat interface will not work.")

    with gr.Row():
        shared_input_textbox = gr.Textbox(
            show_label=False,
            placeholder="Enter your movie query here and press Enter...",
            container=False,
            scale=7, # Make it wider
        )
        submit_button = gr.Button("โœ‰๏ธ Send", variant="primary", scale=1)
        # clear_button = gr.Button("๐Ÿ—‘๏ธ Clear All", scale=1) # If you want a single clear button

    # Predefined examples
    gr.Examples(
        examples=[
            "Hi! I'm looking for something funny to watch tonight.",
            "I love dry, witty humor more than slapstick. Think more British comedy style.",
            "I'm really into complex sci-fi movies that make you think. I loved Arrival and Blade Runner 2049.",
            "I need help planning a family movie night. We have kids aged 8, 11, and 14, plus adults.",
            "I'm going through a tough breakup and need something uplifting but not cheesy romantic.",
            "I loved Parasite and want to explore more international cinema. Where should I start?",
        ],
        inputs=[shared_input_textbox],
        # outputs=[chatbot_base, chatbot_ft], # Examples don't directly populate chatbots
        # fn=lambda x: (None, None), # Dummy function for examples
        label="Example Prompts (click to use)"
    )

    # Event handlers
    def handle_submit(user_message, chat_history_base, chat_history_ft):
        # This will return iterators. Gradio handles them for streaming.
        # Important: chat_history is updated by Gradio automatically by returning (user_message, bot_message_chunk)
        # For simultaneous updates, we need to manage history carefully or use a trick.
        # Gradio's chatbot expects the history list to be updated.
        # The `respond_base` and `respond_finetuned` functions already take history.
        # The issue is that Gradio wants a function that returns the new state of the chatbot.
        
        # Simplest for simultaneous: return None for the other chatbot if we trigger one by one.
        # For true simultaneous, you'd need a more complex setup or separate submit buttons.
        # Let's make them update sequentially for simplicity with one input.
        
        # Update base model chat
        chat_history_base.append((user_message, None)) # Add user message
        # The `yield` from respond_base will update the last message (None)
        
        # Update fine-tuned model chat
        chat_history_ft.append((user_message, None)) # Add user message
        
        # We need to return generators that Gradio can iterate over
        # This won't work directly as Gradio expects outputs to be bound to specific components.
        # We need to make the function return the new state for *both* chatbots.
        # The `respond_base` and `respond_finetuned` should update their respective histories.
        
        # Gradio's Chatbot expects (message, history) -> history or (message, history) -> yield history_updates
        # Let's define wrapper functions for the submit action.
        return "", chat_history_base, chat_history_ft # Clear textbox, pass history

    def base_model_predict(user_message, chat_history):
        chat_history.append((user_message, "")) # Add user message and placeholder for bot
        for response_chunk in respond_base(user_message, chat_history[:-1]): # Pass history without current turn
            chat_history[-1] = (user_message, response_chunk)
            yield chat_history
    
    def ft_model_predict(user_message, chat_history):
        chat_history.append((user_message, ""))
        for response_chunk in respond_finetuned(user_message, chat_history[:-1]):
            chat_history[-1] = (user_message, response_chunk)
            yield chat_history

    # When shared_input_textbox is submitted or submit_button is clicked:
    if model_base is not None:
        shared_input_textbox.submit(
            base_model_predict,
            [shared_input_textbox, chatbot_base],
            [chatbot_base],
        )
        submit_button.click(
            base_model_predict,
            [shared_input_textbox, chatbot_base],
            [chatbot_base],
        )
    
    if model_ft is not None:
        shared_input_textbox.submit(
            ft_model_predict,
            [shared_input_textbox, chatbot_ft],
            [chatbot_ft],
        )
        submit_button.click(
            ft_model_predict,
            [shared_input_textbox, chatbot_ft],
            [chatbot_ft],
        )
    
    # After both predictions are done (or if one is skipped), clear the input textbox
    # This is a bit tricky with simultaneous submits.
    # A simpler way is to clear it on the second submit if both models are active.
    # Or, let Gradio handle textbox clearing by returning "" as the first element of the outputs list.
    
    # If ft_model_predict is the last one to be called from submit:
    if model_ft is not None:
         shared_input_textbox.submit(lambda: "", [], [shared_input_textbox])
         submit_button.click(lambda: "", [], [shared_input_textbox])
    elif model_base is not None: # If only base model is active
         shared_input_textbox.submit(lambda: "", [], [shared_input_textbox])
         submit_button.click(lambda: "", [], [shared_input_textbox])


    # Clear buttons (Individual)
    # clear_base_btn = gr.Button("๐Ÿ—‘๏ธ Clear Base Chat")
    # clear_ft_btn = gr.Button("๐Ÿ—‘๏ธ Clear CineGuide Chat")
    # clear_base_btn.click(lambda: (None, ""), None, [chatbot_base, shared_input_textbox], queue=False)
    # clear_ft_btn.click(lambda: (None, ""), None, [chatbot_ft, shared_input_textbox], queue=False)

# --- Launch the App ---
if __name__ == "__main__":
    demo.queue() # Enable queuing for handling multiple users
    demo.launch(debug=True, share=False) # share=True for public link if running locally