--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-large-finetuned-augmentation-LUNAR results: [] --- # roberta-large-finetuned-augmentation-LUNAR This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6061 - F1: 0.7909 - Roc Auc: 0.8390 - Accuracy: 0.5680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4606 | 1.0 | 179 | 0.3928 | 0.5956 | 0.7155 | 0.4320 | | 0.3171 | 2.0 | 358 | 0.3380 | 0.7156 | 0.7768 | 0.4727 | | 0.2294 | 3.0 | 537 | 0.3398 | 0.7321 | 0.7927 | 0.5077 | | 0.1528 | 4.0 | 716 | 0.3813 | 0.7577 | 0.8113 | 0.5175 | | 0.0887 | 5.0 | 895 | 0.4250 | 0.7669 | 0.8306 | 0.5175 | | 0.0583 | 6.0 | 1074 | 0.4355 | 0.7686 | 0.8278 | 0.5273 | | 0.0448 | 7.0 | 1253 | 0.5045 | 0.7498 | 0.8029 | 0.5316 | | 0.0298 | 8.0 | 1432 | 0.4862 | 0.7809 | 0.8321 | 0.5554 | | 0.0227 | 9.0 | 1611 | 0.5282 | 0.7793 | 0.8248 | 0.5484 | | 0.0111 | 10.0 | 1790 | 0.5567 | 0.7787 | 0.8340 | 0.5428 | | 0.0082 | 11.0 | 1969 | 0.5762 | 0.7845 | 0.8408 | 0.5498 | | 0.0055 | 12.0 | 2148 | 0.5771 | 0.7796 | 0.8325 | 0.5582 | | 0.0032 | 13.0 | 2327 | 0.5884 | 0.7865 | 0.8336 | 0.5610 | | 0.003 | 14.0 | 2506 | 0.6064 | 0.7901 | 0.8380 | 0.5568 | | 0.0024 | 15.0 | 2685 | 0.6061 | 0.7909 | 0.8390 | 0.5680 | | 0.002 | 16.0 | 2864 | 0.6041 | 0.7878 | 0.8399 | 0.5736 | | 0.0016 | 17.0 | 3043 | 0.6129 | 0.7848 | 0.8346 | 0.5596 | | 0.0014 | 18.0 | 3222 | 0.6129 | 0.7860 | 0.8366 | 0.5694 | | 0.0038 | 19.0 | 3401 | 0.6143 | 0.7893 | 0.8400 | 0.5722 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0