sercetexam9
commited on
Model save
Browse files- README.md +83 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/roberta-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: roberta-large-finetuned-augmentation-LUNAR
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# roberta-large-finetuned-augmentation-LUNAR
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6143
|
23 |
+
- F1: 0.7893
|
24 |
+
- Roc Auc: 0.8400
|
25 |
+
- Accuracy: 0.5722
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.4606 | 1.0 | 179 | 0.3928 | 0.5956 | 0.7155 | 0.4320 |
|
58 |
+
| 0.3171 | 2.0 | 358 | 0.3380 | 0.7156 | 0.7768 | 0.4727 |
|
59 |
+
| 0.2294 | 3.0 | 537 | 0.3398 | 0.7321 | 0.7927 | 0.5077 |
|
60 |
+
| 0.1528 | 4.0 | 716 | 0.3813 | 0.7577 | 0.8113 | 0.5175 |
|
61 |
+
| 0.0887 | 5.0 | 895 | 0.4250 | 0.7669 | 0.8306 | 0.5175 |
|
62 |
+
| 0.0583 | 6.0 | 1074 | 0.4355 | 0.7686 | 0.8278 | 0.5273 |
|
63 |
+
| 0.0448 | 7.0 | 1253 | 0.5045 | 0.7498 | 0.8029 | 0.5316 |
|
64 |
+
| 0.0298 | 8.0 | 1432 | 0.4862 | 0.7809 | 0.8321 | 0.5554 |
|
65 |
+
| 0.0227 | 9.0 | 1611 | 0.5282 | 0.7793 | 0.8248 | 0.5484 |
|
66 |
+
| 0.0111 | 10.0 | 1790 | 0.5567 | 0.7787 | 0.8340 | 0.5428 |
|
67 |
+
| 0.0082 | 11.0 | 1969 | 0.5762 | 0.7845 | 0.8408 | 0.5498 |
|
68 |
+
| 0.0055 | 12.0 | 2148 | 0.5771 | 0.7796 | 0.8325 | 0.5582 |
|
69 |
+
| 0.0032 | 13.0 | 2327 | 0.5884 | 0.7865 | 0.8336 | 0.5610 |
|
70 |
+
| 0.003 | 14.0 | 2506 | 0.6064 | 0.7901 | 0.8380 | 0.5568 |
|
71 |
+
| 0.0024 | 15.0 | 2685 | 0.6061 | 0.7909 | 0.8390 | 0.5680 |
|
72 |
+
| 0.002 | 16.0 | 2864 | 0.6041 | 0.7878 | 0.8399 | 0.5736 |
|
73 |
+
| 0.0016 | 17.0 | 3043 | 0.6129 | 0.7848 | 0.8346 | 0.5596 |
|
74 |
+
| 0.0014 | 18.0 | 3222 | 0.6129 | 0.7860 | 0.8366 | 0.5694 |
|
75 |
+
| 0.0038 | 19.0 | 3401 | 0.6143 | 0.7893 | 0.8400 | 0.5722 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.45.1
|
81 |
+
- Pytorch 2.4.0
|
82 |
+
- Datasets 3.0.1
|
83 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1421507716
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2bb7253f239f1992f389db0f3a3d20aff9ddf4c7eede81439383c558b71965
|
3 |
size 1421507716
|