--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-large-finetuned-augmentation-LUNAR-TAPT results: [] --- # roberta-large-finetuned-augmentation-LUNAR-TAPT This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4897 - F1: 0.8302 - Roc Auc: 0.8696 - Accuracy: 0.6338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3371 | 1.0 | 317 | 0.3025 | 0.7356 | 0.8000 | 0.5233 | | 0.2571 | 2.0 | 634 | 0.3055 | 0.7376 | 0.7942 | 0.5572 | | 0.1848 | 3.0 | 951 | 0.2850 | 0.7964 | 0.8431 | 0.5912 | | 0.124 | 4.0 | 1268 | 0.3223 | 0.7738 | 0.8164 | 0.5635 | | 0.0701 | 5.0 | 1585 | 0.3219 | 0.8091 | 0.8597 | 0.5951 | | 0.0491 | 6.0 | 1902 | 0.3576 | 0.8148 | 0.8547 | 0.6014 | | 0.0432 | 7.0 | 2219 | 0.3808 | 0.8216 | 0.8665 | 0.6196 | | 0.0352 | 8.0 | 2536 | 0.3945 | 0.8278 | 0.8721 | 0.6259 | | 0.0282 | 9.0 | 2853 | 0.4357 | 0.8173 | 0.8580 | 0.6054 | | 0.012 | 10.0 | 3170 | 0.4670 | 0.8208 | 0.8679 | 0.5951 | | 0.0054 | 11.0 | 3487 | 0.4864 | 0.8177 | 0.8599 | 0.6038 | | 0.0029 | 12.0 | 3804 | 0.4882 | 0.8289 | 0.8687 | 0.6259 | | 0.0011 | 13.0 | 4121 | 0.4897 | 0.8302 | 0.8696 | 0.6338 | | 0.0012 | 14.0 | 4438 | 0.5079 | 0.8273 | 0.8680 | 0.6251 | | 0.0008 | 15.0 | 4755 | 0.5146 | 0.8285 | 0.8688 | 0.6227 | | 0.0007 | 16.0 | 5072 | 0.5100 | 0.8282 | 0.8693 | 0.6338 | | 0.0008 | 17.0 | 5389 | 0.5158 | 0.8282 | 0.8673 | 0.6330 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0