Update README.md
Browse files
README.md
CHANGED
@@ -1,190 +1,80 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
|
|
118 |
|
119 |
-
|
|
|
120 |
|
121 |
-
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
### Results
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
|
153 |
-
|
154 |
|
155 |
-
### Model Architecture and Objective
|
156 |
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
|
189 |
## More Information [optional]
|
190 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- pruning
|
5 |
+
- distillation
|
6 |
+
- sparsity‑2:4
|
7 |
+
license: apache-2.0
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- de
|
11 |
+
- fr
|
12 |
+
- es
|
13 |
+
- it
|
14 |
+
- pt
|
15 |
+
base_model:
|
16 |
+
- doubledsbv/KafkaLM-15B-Base
|
17 |
+
pipeline_tag: text-generation
|
18 |
---
|
19 |
|
20 |
+
# Model Description
|
21 |
|
22 |
+
**KafkaLM‑15B‑Base** is a 15‑billion‑parameter, sparsity‑aware language model distilled from *Mistral‑Small‑24B‑Base‑2501*.
|
23 |
+
This experimental model was created in three stages:
|
24 |
|
25 |
+
| Stage | What we did | Why it matters |
|
26 |
+
|-------|-------------|----------------|
|
27 |
+
| **1. SimplePrune** | Applied a hierarchical, hardware‑aware pruning pipeline that combines block‑, channel‑ and 2:4 structured sparsity (≈ 37.5 % parameter reduction) | Slashes memory footprint while minimizing perplexity degradation |
|
28 |
+
| **2. Teacher calibration** | Briefly fine‑tuned the unpruned 24 B teacher on a 10 B‑token multilingual European corpus on a AMD M300A cluster | Produces stable logits and hidden states for distillation |
|
29 |
+
| **3. Knowledge distillation** | Distilled the calibrated teacher into the pruned 15 B student using a **fused loss**:<br/>`L Pooled SquareHead + LKL + 0.25 * LCE` | Transfers teacher capabiities effectively with <15B tokens **(< 2 epochs)** on 64 MI300A nodes |
|
30 |
|
31 |
+
**Key capabilities**
|
32 |
|
33 |
+
* Balanced for both **multitask** and multilingual conversation and long context handling
|
34 |
+
* Structured **2:4 sparsity** → runs up to **40 % faster** on sparsity‑aware kernels
|
35 |
+
* Distilled on a combination of multilingual pretraining and synthetic data
|
36 |
+
* Training pipeline optimized for unified‑memory GPUs (AMD MI300A) but runs on any CUDA / ROCm device
|
37 |
|
38 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
## Pruning Process
|
41 |
|
42 |
+
**Pruning & Distillation Strategy — SimplePrune**
|
43 |
+
Hardware‑aware, hierarchical pipeline. SimplePrune starts with coarse block‑level pruning and drills down to channel‑ and neuron‑level removals, finishing with 2 : 4 structured sparsity. This staged approach converts compression ratios into real memory‑bandwidth and latency gains.
|
44 |
|
45 |
+
**Sensitivity‑guided selection**
|
46 |
+
Each stage is driven by activation‑magnitude profiles and Hessian‑based importance scores captured asynchronously during training, allowing the framework to run inside the MI300A’s 512 GB unified memory without OOM interruptions.
|
47 |
|
48 |
+
**Two‑phase optimisation**
|
49 |
+
A fast greedy pass prunes low‑impact blocks in MLP expansion layers, after which a **Tabu‑Search** meta‑heuristic explores cross‑layer combinations for a better global trade‑off between sparsity and perplexity/KL divergence.
|
50 |
|
51 |
+
**Post‑pruning knowledge distillation**
|
52 |
+
The pruned 15 B student is distilled from a calibrated 24 B teacher using a fused LSquareHead + KL + 0.25 · CE loss across 20 B multilingual tokens, restoring > 96 % of the original quality in ≤ 2 epochs on up to 64 MI300A nodes.
|
|
|
53 |
|
54 |
### Results
|
55 |
+
Up to 40 % parameter reduction (24 B → 15 B) delivers 2× lower TTFT and ≈ 40 % higher tokens/s versus the uncompressed teacher while matching perplexity and divergence metrics—validating SimplePrune as an effective route to deploy KafkaLM in memory‑constrained, sparsity‑accelerated environments.
|
56 |
|
57 |
+
| Metric | Mistral‑24B | **KafkaLM‑15B** | Δ |
|
58 |
+
|--------|-------------|-----------------|---|
|
59 |
+
| Time‑to‑First‑Token | 4.91 s | **2.46 s** | −50 % |
|
60 |
+
| Prompts / s | 4.70 | **6.55** | +38 % |
|
61 |
+
| Tokens / s | 579 | **812** | +40 % |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+

|
64 |
|
65 |
+
### Training scalability (distillation run, MI300A cluster)
|
66 |
|
67 |
+
| Nodes | Tokens / s | Speed‑up |
|
68 |
+
|-------|------------|----------|
|
69 |
+
| 4 | 1 461 | – |
|
70 |
+
| 8 | 3 327 | 2.3 × |
|
71 |
+
| 16 | 7 423 | 5.1 × |
|
72 |
+
| 32 | 15 286 | 10.5 × |
|
73 |
+
| 64 | 25 455 | 17.4 × |
|
74 |
|
75 |
+
Near‑linear scaling thanks to sharded ZeRO‑3 + RCCL optimisations.
|
76 |
|
|
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
## More Information [optional]
|
80 |
|