Upload 18 files
Browse files- checkpoint-100-llava/config.json +74 -0
- checkpoint-100-llava/generation_config.json +6 -0
- checkpoint-100-llava/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-100-llava/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-100-llava/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-100-llava/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-100-llava/latest +1 -0
- checkpoint-100-llava/pytorch_model-00001-of-00002.bin +3 -0
- checkpoint-100-llava/pytorch_model-00002-of-00002.bin +3 -0
- checkpoint-100-llava/pytorch_model.bin.index.json +725 -0
- checkpoint-100-llava/rng_state_0.pth +3 -0
- checkpoint-100-llava/rng_state_1.pth +3 -0
- checkpoint-100-llava/special_tokens_map.json +24 -0
- checkpoint-100-llava/tokenizer.model +3 -0
- checkpoint-100-llava/tokenizer_config.json +72 -0
- checkpoint-100-llava/trainer_state.json +1616 -0
- checkpoint-100-llava/training_args.bin +3 -0
- checkpoint-100-llava/zero_to_fp32.py +578 -0
checkpoint-100-llava/config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/datascience3/Boya/bouyang/llava-ftmodel\u2014twoepoch",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"freeze_mm_mlp_adapter": false,
|
11 |
+
"freeze_mm_vision_resampler": false,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"image_aspect_ratio": "pad",
|
15 |
+
"image_crop_resolution": 224,
|
16 |
+
"image_grid_pinpoints": [
|
17 |
+
[
|
18 |
+
336,
|
19 |
+
672
|
20 |
+
],
|
21 |
+
[
|
22 |
+
672,
|
23 |
+
336
|
24 |
+
],
|
25 |
+
[
|
26 |
+
672,
|
27 |
+
672
|
28 |
+
],
|
29 |
+
[
|
30 |
+
1008,
|
31 |
+
336
|
32 |
+
],
|
33 |
+
[
|
34 |
+
336,
|
35 |
+
1008
|
36 |
+
]
|
37 |
+
],
|
38 |
+
"image_split_resolution": 224,
|
39 |
+
"initializer_range": 0.02,
|
40 |
+
"intermediate_size": 14336,
|
41 |
+
"max_position_embeddings": 32768,
|
42 |
+
"mm_hidden_size": 1024,
|
43 |
+
"mm_patch_merge_type": "spatial_unpad",
|
44 |
+
"mm_projector_lr": null,
|
45 |
+
"mm_projector_type": "mlp2x_gelu",
|
46 |
+
"mm_resampler_type": null,
|
47 |
+
"mm_use_im_patch_token": false,
|
48 |
+
"mm_use_im_start_end": false,
|
49 |
+
"mm_vision_select_feature": "patch",
|
50 |
+
"mm_vision_select_layer": -2,
|
51 |
+
"mm_vision_tower": "model/clip-vit-large-patch14-336",
|
52 |
+
"mm_vision_tower_lr": 2e-06,
|
53 |
+
"model_type": "llava",
|
54 |
+
"num_attention_heads": 32,
|
55 |
+
"num_hidden_layers": 32,
|
56 |
+
"num_key_value_heads": 8,
|
57 |
+
"pad_token_id": 0,
|
58 |
+
"pretraining_tp": 1,
|
59 |
+
"rms_norm_eps": 1e-05,
|
60 |
+
"rope_scaling": null,
|
61 |
+
"rope_theta": 1000000.0,
|
62 |
+
"sliding_window": null,
|
63 |
+
"tie_word_embeddings": false,
|
64 |
+
"tokenizer_model_max_length": 2048,
|
65 |
+
"tokenizer_padding_side": "right",
|
66 |
+
"torch_dtype": "bfloat16",
|
67 |
+
"transformers_version": "4.31.0",
|
68 |
+
"tune_mm_mlp_adapter": false,
|
69 |
+
"tune_mm_vision_resampler": false,
|
70 |
+
"unfreeze_mm_vision_tower": true,
|
71 |
+
"use_cache": false,
|
72 |
+
"use_mm_proj": true,
|
73 |
+
"vocab_size": 32000
|
74 |
+
}
|
checkpoint-100-llava/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.31.0"
|
6 |
+
}
|
checkpoint-100-llava/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff002d1e4a4e3cc2d3c7fe2671492e90cfaf397a76670ee248981a983bc7d05b
|
3 |
+
size 912314871
|
checkpoint-100-llava/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9681badb4470e3025d375f8ff3d0bcdb500b2ccd81202f19458a6d537a385ca7
|
3 |
+
size 912314871
|
checkpoint-100-llava/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c1696e97171c09831ddd43c846d0420dc259a3d19b5218a5daf3a6f523b392
|
3 |
+
size 1019478016
|
checkpoint-100-llava/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ccacd3ab037412a6d5dc89780f55977911fa99094506b278c92258827d9cefe
|
3 |
+
size 1018691584
|
checkpoint-100-llava/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step100
|
checkpoint-100-llava/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1e7e0b672c0130bb7806a1c46ec886a31850ba4a9a53f22c04fb7eca7557471
|
3 |
+
size 1018429440
|
checkpoint-100-llava/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdb29e9f6dfe8381efa76701aca1249d37c0564adfd884518d9d77edca3d04ce
|
3 |
+
size 1020002304
|
checkpoint-100-llava/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15132442624
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"model.mm_projector.0.bias": "pytorch_model-00002-of-00002.bin",
|
329 |
+
"model.mm_projector.0.weight": "pytorch_model-00002-of-00002.bin",
|
330 |
+
"model.mm_projector.2.bias": "pytorch_model-00002-of-00002.bin",
|
331 |
+
"model.mm_projector.2.weight": "pytorch_model-00002-of-00002.bin",
|
332 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin",
|
333 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00002-of-00002.bin",
|
334 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00002-of-00002.bin",
|
335 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00002-of-00002.bin",
|
336 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
337 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
338 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
339 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
340 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
341 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
342 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
343 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
344 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
345 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
346 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
347 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
348 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
349 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
350 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
351 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
352 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
353 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
354 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
355 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
356 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
357 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
358 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
359 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
360 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
361 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
362 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
363 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
364 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
365 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
366 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
367 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
368 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
369 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
370 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
371 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
372 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
373 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
374 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
375 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
376 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
377 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
378 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
379 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
380 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
381 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
382 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
383 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
384 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
385 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
386 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
387 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
388 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
389 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
390 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
391 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
392 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
393 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
394 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
395 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
396 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
397 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
398 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
399 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
400 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
401 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
402 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
403 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
404 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
405 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
406 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
407 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
408 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
409 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
410 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
411 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
412 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
413 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
414 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
415 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
416 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
417 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
418 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
419 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
420 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
421 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
422 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
423 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
424 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
425 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
426 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
427 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
428 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
429 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
430 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
431 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
432 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
433 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
434 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
435 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
436 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
437 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
438 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
439 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
440 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
441 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
442 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
443 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
444 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
445 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
446 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
447 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
448 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
449 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
450 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
451 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
452 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
453 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
454 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
455 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
456 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
457 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
458 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
459 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
460 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
461 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
462 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
463 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
464 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
465 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
466 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
467 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
468 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
469 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
470 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
471 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
472 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
473 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
474 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
475 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
476 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
477 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
478 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
479 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
480 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
481 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
482 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
483 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
484 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
485 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
486 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
487 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
488 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
489 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
490 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
491 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
492 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
493 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
494 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
495 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
688 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
689 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
690 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
691 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
692 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
693 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
694 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
695 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
696 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
697 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
698 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
699 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
700 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
701 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
702 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
703 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
704 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
|
705 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
|
706 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
|
707 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
|
708 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
|
709 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
|
710 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
|
711 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
|
712 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
|
713 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
714 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
|
715 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
|
716 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
|
717 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
718 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
|
719 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
720 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
721 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
722 |
+
"model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00002-of-00002.bin",
|
723 |
+
"model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00002-of-00002.bin"
|
724 |
+
}
|
725 |
+
}
|
checkpoint-100-llava/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70c0b62bd953493d0675c34feecb6cb4564541e1efc60bb1704ce38255044908
|
3 |
+
size 15607
|
checkpoint-100-llava/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:241736953f399f6929c6ad898eaf28227b020331cba8da2c020aaaff41594b10
|
3 |
+
size 15607
|
checkpoint-100-llava/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-100-llava/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
checkpoint-100-llava/tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": {
|
32 |
+
"__type": "AddedToken",
|
33 |
+
"content": "<s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": true,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
},
|
39 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
40 |
+
"clean_up_tokenization_spaces": false,
|
41 |
+
"eos_token": {
|
42 |
+
"__type": "AddedToken",
|
43 |
+
"content": "</s>",
|
44 |
+
"lstrip": false,
|
45 |
+
"normalized": true,
|
46 |
+
"rstrip": false,
|
47 |
+
"single_word": false
|
48 |
+
},
|
49 |
+
"legacy": true,
|
50 |
+
"model_max_length": 2048,
|
51 |
+
"pad_token": {
|
52 |
+
"__type": "AddedToken",
|
53 |
+
"content": "<unk>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
},
|
59 |
+
"padding_side": "right",
|
60 |
+
"sp_model_kwargs": {},
|
61 |
+
"spaces_between_special_tokens": false,
|
62 |
+
"tokenizer_class": "LlamaTokenizer",
|
63 |
+
"unk_token": {
|
64 |
+
"__type": "AddedToken",
|
65 |
+
"content": "<unk>",
|
66 |
+
"lstrip": false,
|
67 |
+
"normalized": true,
|
68 |
+
"rstrip": false,
|
69 |
+
"single_word": false
|
70 |
+
},
|
71 |
+
"use_default_system_prompt": false
|
72 |
+
}
|
checkpoint-100-llava/trainer_state.json
ADDED
@@ -0,0 +1,1616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6379585326953748,
|
5 |
+
"global_step": 100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4e-07,
|
13 |
+
"logits/chosen": -2.9071130752563477,
|
14 |
+
"logits/rejected": -2.8750061988830566,
|
15 |
+
"loss": 0.6931,
|
16 |
+
"policy_logps/chosen": -127.82667541503906,
|
17 |
+
"policy_logps/rejected": -130.1011505126953,
|
18 |
+
"referece_logps/chosen": -127.82667541503906,
|
19 |
+
"referece_logps/rejected": -130.1011505126953,
|
20 |
+
"rewards/accuracies": 0.0,
|
21 |
+
"rewards/chosen": 0.0,
|
22 |
+
"rewards/margins": 0.0,
|
23 |
+
"rewards/rejected": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01,
|
28 |
+
"learning_rate": 8e-07,
|
29 |
+
"logits/chosen": -2.8690595626831055,
|
30 |
+
"logits/rejected": -2.921374797821045,
|
31 |
+
"loss": 0.6931,
|
32 |
+
"policy_logps/chosen": -127.44483947753906,
|
33 |
+
"policy_logps/rejected": -118.97954559326172,
|
34 |
+
"referece_logps/chosen": -127.44483947753906,
|
35 |
+
"referece_logps/rejected": -118.97954559326172,
|
36 |
+
"rewards/accuracies": 0.0,
|
37 |
+
"rewards/chosen": 0.0,
|
38 |
+
"rewards/margins": 0.0,
|
39 |
+
"rewards/rejected": 0.0,
|
40 |
+
"step": 2
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 0.02,
|
44 |
+
"learning_rate": 1.2e-06,
|
45 |
+
"logits/chosen": -2.876248359680176,
|
46 |
+
"logits/rejected": -2.9442975521087646,
|
47 |
+
"loss": 0.6931,
|
48 |
+
"policy_logps/chosen": -151.38050842285156,
|
49 |
+
"policy_logps/rejected": -104.58517456054688,
|
50 |
+
"referece_logps/chosen": -151.3734893798828,
|
51 |
+
"referece_logps/rejected": -104.58135986328125,
|
52 |
+
"rewards/accuracies": 0.3125,
|
53 |
+
"rewards/chosen": -0.0007032513385638595,
|
54 |
+
"rewards/margins": -0.00032021405058912933,
|
55 |
+
"rewards/rejected": -0.0003830373170785606,
|
56 |
+
"step": 3
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.03,
|
60 |
+
"learning_rate": 1.6e-06,
|
61 |
+
"logits/chosen": -2.923973560333252,
|
62 |
+
"logits/rejected": -2.9425337314605713,
|
63 |
+
"loss": 0.6924,
|
64 |
+
"policy_logps/chosen": -121.4244613647461,
|
65 |
+
"policy_logps/rejected": -117.06787109375,
|
66 |
+
"referece_logps/chosen": -121.42953491210938,
|
67 |
+
"referece_logps/rejected": -117.06060028076172,
|
68 |
+
"rewards/accuracies": 0.5625,
|
69 |
+
"rewards/chosen": 0.0005075454828329384,
|
70 |
+
"rewards/margins": 0.0012342334957793355,
|
71 |
+
"rewards/rejected": -0.0007266878965310752,
|
72 |
+
"step": 4
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.03,
|
76 |
+
"learning_rate": 2e-06,
|
77 |
+
"logits/chosen": -2.896630048751831,
|
78 |
+
"logits/rejected": -2.874107837677002,
|
79 |
+
"loss": 0.6925,
|
80 |
+
"policy_logps/chosen": -112.3115234375,
|
81 |
+
"policy_logps/rejected": -117.28302764892578,
|
82 |
+
"referece_logps/chosen": -112.33646392822266,
|
83 |
+
"referece_logps/rejected": -117.27299499511719,
|
84 |
+
"rewards/accuracies": 0.625,
|
85 |
+
"rewards/chosen": 0.0024944781325757504,
|
86 |
+
"rewards/margins": 0.003496956778690219,
|
87 |
+
"rewards/rejected": -0.0010024786461144686,
|
88 |
+
"step": 5
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.04,
|
92 |
+
"learning_rate": 1.999783578606323e-06,
|
93 |
+
"logits/chosen": -2.8770463466644287,
|
94 |
+
"logits/rejected": -2.893326759338379,
|
95 |
+
"loss": 0.6908,
|
96 |
+
"policy_logps/chosen": -111.89071655273438,
|
97 |
+
"policy_logps/rejected": -110.08009338378906,
|
98 |
+
"referece_logps/chosen": -111.92901611328125,
|
99 |
+
"referece_logps/rejected": -110.06503295898438,
|
100 |
+
"rewards/accuracies": 0.75,
|
101 |
+
"rewards/chosen": 0.00383090996183455,
|
102 |
+
"rewards/margins": 0.005336493253707886,
|
103 |
+
"rewards/rejected": -0.0015055835247039795,
|
104 |
+
"step": 6
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.04,
|
108 |
+
"learning_rate": 1.999134408101731e-06,
|
109 |
+
"logits/chosen": -2.8742122650146484,
|
110 |
+
"logits/rejected": -2.9248428344726562,
|
111 |
+
"loss": 0.6872,
|
112 |
+
"policy_logps/chosen": -160.53836059570312,
|
113 |
+
"policy_logps/rejected": -137.42295837402344,
|
114 |
+
"referece_logps/chosen": -160.57460021972656,
|
115 |
+
"referece_logps/rejected": -137.33425903320312,
|
116 |
+
"rewards/accuracies": 0.75,
|
117 |
+
"rewards/chosen": 0.003623390104621649,
|
118 |
+
"rewards/margins": 0.01249313447624445,
|
119 |
+
"rewards/rejected": -0.008869742974638939,
|
120 |
+
"step": 7
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 0.05,
|
124 |
+
"learning_rate": 1.998052769474995e-06,
|
125 |
+
"logits/chosen": -2.9328360557556152,
|
126 |
+
"logits/rejected": -2.975874185562134,
|
127 |
+
"loss": 0.6898,
|
128 |
+
"policy_logps/chosen": -75.984619140625,
|
129 |
+
"policy_logps/rejected": -74.07447814941406,
|
130 |
+
"referece_logps/chosen": -76.07889556884766,
|
131 |
+
"referece_logps/rejected": -74.01802825927734,
|
132 |
+
"rewards/accuracies": 0.75,
|
133 |
+
"rewards/chosen": 0.009427506476640701,
|
134 |
+
"rewards/margins": 0.015072083100676537,
|
135 |
+
"rewards/rejected": -0.0056445784866809845,
|
136 |
+
"step": 8
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.06,
|
140 |
+
"learning_rate": 1.9965391309055927e-06,
|
141 |
+
"logits/chosen": -2.882821798324585,
|
142 |
+
"logits/rejected": -2.901142120361328,
|
143 |
+
"loss": 0.6773,
|
144 |
+
"policy_logps/chosen": -107.12052917480469,
|
145 |
+
"policy_logps/rejected": -93.86226654052734,
|
146 |
+
"referece_logps/chosen": -107.38616943359375,
|
147 |
+
"referece_logps/rejected": -93.67011260986328,
|
148 |
+
"rewards/accuracies": 0.9375,
|
149 |
+
"rewards/chosen": 0.026563584804534912,
|
150 |
+
"rewards/margins": 0.04577912390232086,
|
151 |
+
"rewards/rejected": -0.019215542823076248,
|
152 |
+
"step": 9
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.06,
|
156 |
+
"learning_rate": 1.9945941475610623e-06,
|
157 |
+
"logits/chosen": -2.8708529472351074,
|
158 |
+
"logits/rejected": -2.9397594928741455,
|
159 |
+
"loss": 0.6735,
|
160 |
+
"policy_logps/chosen": -123.71336364746094,
|
161 |
+
"policy_logps/rejected": -100.81864166259766,
|
162 |
+
"referece_logps/chosen": -124.01136779785156,
|
163 |
+
"referece_logps/rejected": -100.63360595703125,
|
164 |
+
"rewards/accuracies": 1.0,
|
165 |
+
"rewards/chosen": 0.029799818992614746,
|
166 |
+
"rewards/margins": 0.048302434384822845,
|
167 |
+
"rewards/rejected": -0.0185026116669178,
|
168 |
+
"step": 10
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.07,
|
172 |
+
"learning_rate": 1.992218661313415e-06,
|
173 |
+
"logits/chosen": -2.8874049186706543,
|
174 |
+
"logits/rejected": -2.9123711585998535,
|
175 |
+
"loss": 0.6729,
|
176 |
+
"policy_logps/chosen": -104.46468353271484,
|
177 |
+
"policy_logps/rejected": -98.05982971191406,
|
178 |
+
"referece_logps/chosen": -104.58216857910156,
|
179 |
+
"referece_logps/rejected": -97.82801055908203,
|
180 |
+
"rewards/accuracies": 0.8125,
|
181 |
+
"rewards/chosen": 0.011748719029128551,
|
182 |
+
"rewards/margins": 0.03493000194430351,
|
183 |
+
"rewards/rejected": -0.023181283846497536,
|
184 |
+
"step": 11
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.08,
|
188 |
+
"learning_rate": 1.98941370037474e-06,
|
189 |
+
"logits/chosen": -2.9089269638061523,
|
190 |
+
"logits/rejected": -2.887115478515625,
|
191 |
+
"loss": 0.67,
|
192 |
+
"policy_logps/chosen": -125.26738739013672,
|
193 |
+
"policy_logps/rejected": -118.79678344726562,
|
194 |
+
"referece_logps/chosen": -125.5167007446289,
|
195 |
+
"referece_logps/rejected": -118.42857360839844,
|
196 |
+
"rewards/accuracies": 0.875,
|
197 |
+
"rewards/chosen": 0.024931641295552254,
|
198 |
+
"rewards/margins": 0.06175263226032257,
|
199 |
+
"rewards/rejected": -0.036820992827415466,
|
200 |
+
"step": 12
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.08,
|
204 |
+
"learning_rate": 1.986180478852149e-06,
|
205 |
+
"logits/chosen": -2.8961265087127686,
|
206 |
+
"logits/rejected": -2.85491943359375,
|
207 |
+
"loss": 0.6635,
|
208 |
+
"policy_logps/chosen": -152.51437377929688,
|
209 |
+
"policy_logps/rejected": -152.42971801757812,
|
210 |
+
"referece_logps/chosen": -152.56588745117188,
|
211 |
+
"referece_logps/rejected": -152.2041015625,
|
212 |
+
"rewards/accuracies": 0.5625,
|
213 |
+
"rewards/chosen": 0.005150413140654564,
|
214 |
+
"rewards/margins": 0.027712417766451836,
|
215 |
+
"rewards/rejected": -0.02256200462579727,
|
216 |
+
"step": 13
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.09,
|
220 |
+
"learning_rate": 1.982520396222257e-06,
|
221 |
+
"logits/chosen": -2.8753738403320312,
|
222 |
+
"logits/rejected": -2.912999153137207,
|
223 |
+
"loss": 0.6472,
|
224 |
+
"policy_logps/chosen": -101.14571380615234,
|
225 |
+
"policy_logps/rejected": -99.60147094726562,
|
226 |
+
"referece_logps/chosen": -101.51478576660156,
|
227 |
+
"referece_logps/rejected": -98.9403076171875,
|
228 |
+
"rewards/accuracies": 0.875,
|
229 |
+
"rewards/chosen": 0.03690744936466217,
|
230 |
+
"rewards/margins": 0.10302485525608063,
|
231 |
+
"rewards/rejected": -0.06611741334199905,
|
232 |
+
"step": 14
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.1,
|
236 |
+
"learning_rate": 1.978435036725432e-06,
|
237 |
+
"logits/chosen": -2.9012084007263184,
|
238 |
+
"logits/rejected": -2.8953423500061035,
|
239 |
+
"loss": 0.6372,
|
240 |
+
"policy_logps/chosen": -126.27330017089844,
|
241 |
+
"policy_logps/rejected": -128.28578186035156,
|
242 |
+
"referece_logps/chosen": -126.68486785888672,
|
243 |
+
"referece_logps/rejected": -127.51297760009766,
|
244 |
+
"rewards/accuracies": 1.0,
|
245 |
+
"rewards/chosen": 0.04115738719701767,
|
246 |
+
"rewards/margins": 0.11843809485435486,
|
247 |
+
"rewards/rejected": -0.07728070020675659,
|
248 |
+
"step": 15
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.1,
|
252 |
+
"learning_rate": 1.9739261686800657e-06,
|
253 |
+
"logits/chosen": -2.9024605751037598,
|
254 |
+
"logits/rejected": -2.8853814601898193,
|
255 |
+
"loss": 0.6414,
|
256 |
+
"policy_logps/chosen": -114.59141540527344,
|
257 |
+
"policy_logps/rejected": -128.96331787109375,
|
258 |
+
"referece_logps/chosen": -114.98219299316406,
|
259 |
+
"referece_logps/rejected": -128.28781127929688,
|
260 |
+
"rewards/accuracies": 0.875,
|
261 |
+
"rewards/chosen": 0.03907782956957817,
|
262 |
+
"rewards/margins": 0.1066286489367485,
|
263 |
+
"rewards/rejected": -0.06755081564188004,
|
264 |
+
"step": 16
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.11,
|
268 |
+
"learning_rate": 1.968995743717171e-06,
|
269 |
+
"logits/chosen": -2.912461757659912,
|
270 |
+
"logits/rejected": -2.9493064880371094,
|
271 |
+
"loss": 0.6429,
|
272 |
+
"policy_logps/chosen": -111.6058349609375,
|
273 |
+
"policy_logps/rejected": -109.18556213378906,
|
274 |
+
"referece_logps/chosen": -111.89552307128906,
|
275 |
+
"referece_logps/rejected": -108.55181884765625,
|
276 |
+
"rewards/accuracies": 0.75,
|
277 |
+
"rewards/chosen": 0.028969965875148773,
|
278 |
+
"rewards/margins": 0.09234414994716644,
|
279 |
+
"rewards/rejected": -0.06337418407201767,
|
280 |
+
"step": 17
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.11,
|
284 |
+
"learning_rate": 1.9636458959356316e-06,
|
285 |
+
"logits/chosen": -2.8974556922912598,
|
286 |
+
"logits/rejected": -2.89353084564209,
|
287 |
+
"loss": 0.6528,
|
288 |
+
"policy_logps/chosen": -138.28262329101562,
|
289 |
+
"policy_logps/rejected": -128.17782592773438,
|
290 |
+
"referece_logps/chosen": -138.3295440673828,
|
291 |
+
"referece_logps/rejected": -127.26476287841797,
|
292 |
+
"rewards/accuracies": 0.875,
|
293 |
+
"rewards/chosen": 0.004691671580076218,
|
294 |
+
"rewards/margins": 0.09599801898002625,
|
295 |
+
"rewards/rejected": -0.09130635112524033,
|
296 |
+
"step": 18
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.12,
|
300 |
+
"learning_rate": 1.9578789409784727e-06,
|
301 |
+
"logits/chosen": -2.8959522247314453,
|
302 |
+
"logits/rejected": -2.9369704723358154,
|
303 |
+
"loss": 0.6446,
|
304 |
+
"policy_logps/chosen": -111.41603088378906,
|
305 |
+
"policy_logps/rejected": -104.68195343017578,
|
306 |
+
"referece_logps/chosen": -111.60549926757812,
|
307 |
+
"referece_logps/rejected": -104.04905700683594,
|
308 |
+
"rewards/accuracies": 0.8125,
|
309 |
+
"rewards/chosen": 0.018947793170809746,
|
310 |
+
"rewards/margins": 0.08223824948072433,
|
311 |
+
"rewards/rejected": -0.06329045444726944,
|
312 |
+
"step": 19
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.13,
|
316 |
+
"learning_rate": 1.951697375030553e-06,
|
317 |
+
"logits/chosen": -2.853641986846924,
|
318 |
+
"logits/rejected": -2.8619699478149414,
|
319 |
+
"loss": 0.6466,
|
320 |
+
"policy_logps/chosen": -145.3450927734375,
|
321 |
+
"policy_logps/rejected": -134.5753631591797,
|
322 |
+
"referece_logps/chosen": -145.5601348876953,
|
323 |
+
"referece_logps/rejected": -133.66200256347656,
|
324 |
+
"rewards/accuracies": 0.8125,
|
325 |
+
"rewards/chosen": 0.021503955125808716,
|
326 |
+
"rewards/margins": 0.11283906549215317,
|
327 |
+
"rewards/rejected": -0.09133510291576385,
|
328 |
+
"step": 20
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.13,
|
332 |
+
"learning_rate": 1.9451038737381077e-06,
|
333 |
+
"logits/chosen": -2.93542218208313,
|
334 |
+
"logits/rejected": -2.9347047805786133,
|
335 |
+
"loss": 0.6346,
|
336 |
+
"policy_logps/chosen": -97.80740356445312,
|
337 |
+
"policy_logps/rejected": -92.36180877685547,
|
338 |
+
"referece_logps/chosen": -97.90306091308594,
|
339 |
+
"referece_logps/rejected": -91.67369079589844,
|
340 |
+
"rewards/accuracies": 0.8125,
|
341 |
+
"rewards/chosen": 0.009566396474838257,
|
342 |
+
"rewards/margins": 0.07837802916765213,
|
343 |
+
"rewards/rejected": -0.06881163269281387,
|
344 |
+
"step": 21
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.14,
|
348 |
+
"learning_rate": 1.9381012910506143e-06,
|
349 |
+
"logits/chosen": -2.8574209213256836,
|
350 |
+
"logits/rejected": -2.860379219055176,
|
351 |
+
"loss": 0.6102,
|
352 |
+
"policy_logps/chosen": -152.8387908935547,
|
353 |
+
"policy_logps/rejected": -156.60391235351562,
|
354 |
+
"referece_logps/chosen": -152.914306640625,
|
355 |
+
"referece_logps/rejected": -155.2355499267578,
|
356 |
+
"rewards/accuracies": 0.9375,
|
357 |
+
"rewards/chosen": 0.007550956681370735,
|
358 |
+
"rewards/margins": 0.14438626170158386,
|
359 |
+
"rewards/rejected": -0.13683530688285828,
|
360 |
+
"step": 22
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.15,
|
364 |
+
"learning_rate": 1.9306926579854817e-06,
|
365 |
+
"logits/chosen": -2.8623623847961426,
|
366 |
+
"logits/rejected": -2.8780465126037598,
|
367 |
+
"loss": 0.6306,
|
368 |
+
"policy_logps/chosen": -143.302490234375,
|
369 |
+
"policy_logps/rejected": -127.38278198242188,
|
370 |
+
"referece_logps/chosen": -143.29205322265625,
|
371 |
+
"referece_logps/rejected": -126.24747467041016,
|
372 |
+
"rewards/accuracies": 0.875,
|
373 |
+
"rewards/chosen": -0.0010449867695569992,
|
374 |
+
"rewards/margins": 0.11248550564050674,
|
375 |
+
"rewards/rejected": -0.11353050917387009,
|
376 |
+
"step": 23
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.15,
|
380 |
+
"learning_rate": 1.922881181316097e-06,
|
381 |
+
"logits/chosen": -2.949070930480957,
|
382 |
+
"logits/rejected": -2.954594135284424,
|
383 |
+
"loss": 0.6002,
|
384 |
+
"policy_logps/chosen": -74.232177734375,
|
385 |
+
"policy_logps/rejected": -73.76258850097656,
|
386 |
+
"referece_logps/chosen": -75.20740509033203,
|
387 |
+
"referece_logps/rejected": -72.94302368164062,
|
388 |
+
"rewards/accuracies": 0.875,
|
389 |
+
"rewards/chosen": 0.09752248972654343,
|
390 |
+
"rewards/margins": 0.17947959899902344,
|
391 |
+
"rewards/rejected": -0.08195710927248001,
|
392 |
+
"step": 24
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.16,
|
396 |
+
"learning_rate": 1.9146702421837946e-06,
|
397 |
+
"logits/chosen": -2.8681116104125977,
|
398 |
+
"logits/rejected": -2.8957810401916504,
|
399 |
+
"loss": 0.612,
|
400 |
+
"policy_logps/chosen": -127.76103210449219,
|
401 |
+
"policy_logps/rejected": -125.47801208496094,
|
402 |
+
"referece_logps/chosen": -128.02197265625,
|
403 |
+
"referece_logps/rejected": -124.08172607421875,
|
404 |
+
"rewards/accuracies": 0.8125,
|
405 |
+
"rewards/chosen": 0.026093529537320137,
|
406 |
+
"rewards/margins": 0.1657221019268036,
|
407 |
+
"rewards/rejected": -0.1396285593509674,
|
408 |
+
"step": 25
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.17,
|
412 |
+
"learning_rate": 1.906063394634356e-06,
|
413 |
+
"logits/chosen": -2.862689256668091,
|
414 |
+
"logits/rejected": -2.877995252609253,
|
415 |
+
"loss": 0.6398,
|
416 |
+
"policy_logps/chosen": -120.70744323730469,
|
417 |
+
"policy_logps/rejected": -113.76991271972656,
|
418 |
+
"referece_logps/chosen": -120.96971130371094,
|
419 |
+
"referece_logps/rejected": -112.71368408203125,
|
420 |
+
"rewards/accuracies": 0.875,
|
421 |
+
"rewards/chosen": 0.026226602494716644,
|
422 |
+
"rewards/margins": 0.13184988498687744,
|
423 |
+
"rewards/rejected": -0.1056232899427414,
|
424 |
+
"step": 26
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.17,
|
428 |
+
"learning_rate": 1.897064364079664e-06,
|
429 |
+
"logits/chosen": -2.9357306957244873,
|
430 |
+
"logits/rejected": -2.976917028427124,
|
431 |
+
"loss": 0.5904,
|
432 |
+
"policy_logps/chosen": -105.41529846191406,
|
433 |
+
"policy_logps/rejected": -96.86430358886719,
|
434 |
+
"referece_logps/chosen": -106.42874145507812,
|
435 |
+
"referece_logps/rejected": -95.49075317382812,
|
436 |
+
"rewards/accuracies": 0.875,
|
437 |
+
"rewards/chosen": 0.10134478658437729,
|
438 |
+
"rewards/margins": 0.23869961500167847,
|
439 |
+
"rewards/rejected": -0.13735483586788177,
|
440 |
+
"step": 27
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.18,
|
444 |
+
"learning_rate": 1.8876770456851876e-06,
|
445 |
+
"logits/chosen": -2.8511600494384766,
|
446 |
+
"logits/rejected": -2.888685941696167,
|
447 |
+
"loss": 0.5817,
|
448 |
+
"policy_logps/chosen": -135.38853454589844,
|
449 |
+
"policy_logps/rejected": -136.4590301513672,
|
450 |
+
"referece_logps/chosen": -135.95562744140625,
|
451 |
+
"referece_logps/rejected": -134.50482177734375,
|
452 |
+
"rewards/accuracies": 0.9375,
|
453 |
+
"rewards/chosen": 0.05670913681387901,
|
454 |
+
"rewards/margins": 0.2521297335624695,
|
455 |
+
"rewards/rejected": -0.19542059302330017,
|
456 |
+
"step": 28
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.19,
|
460 |
+
"learning_rate": 1.8779055026839868e-06,
|
461 |
+
"logits/chosen": -2.9084866046905518,
|
462 |
+
"logits/rejected": -2.9267258644104004,
|
463 |
+
"loss": 0.6042,
|
464 |
+
"policy_logps/chosen": -134.9838409423828,
|
465 |
+
"policy_logps/rejected": -114.98860931396484,
|
466 |
+
"referece_logps/chosen": -135.53085327148438,
|
467 |
+
"referece_logps/rejected": -113.39382934570312,
|
468 |
+
"rewards/accuracies": 0.9375,
|
469 |
+
"rewards/chosen": 0.05469997972249985,
|
470 |
+
"rewards/margins": 0.21417750418186188,
|
471 |
+
"rewards/rejected": -0.15947751700878143,
|
472 |
+
"step": 29
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.19,
|
476 |
+
"learning_rate": 1.8677539646179705e-06,
|
477 |
+
"logits/chosen": -2.88179349899292,
|
478 |
+
"logits/rejected": -2.929935932159424,
|
479 |
+
"loss": 0.5827,
|
480 |
+
"policy_logps/chosen": -163.58660888671875,
|
481 |
+
"policy_logps/rejected": -131.79258728027344,
|
482 |
+
"referece_logps/chosen": -163.90985107421875,
|
483 |
+
"referece_logps/rejected": -129.81314086914062,
|
484 |
+
"rewards/accuracies": 0.8125,
|
485 |
+
"rewards/chosen": 0.0323248989880085,
|
486 |
+
"rewards/margins": 0.23026807606220245,
|
487 |
+
"rewards/rejected": -0.19794318079948425,
|
488 |
+
"step": 30
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.2,
|
492 |
+
"learning_rate": 1.8572268255071718e-06,
|
493 |
+
"logits/chosen": -2.9416298866271973,
|
494 |
+
"logits/rejected": -2.961357831954956,
|
495 |
+
"loss": 0.5977,
|
496 |
+
"policy_logps/chosen": -98.88802337646484,
|
497 |
+
"policy_logps/rejected": -94.90333557128906,
|
498 |
+
"referece_logps/chosen": -99.61119842529297,
|
499 |
+
"referece_logps/rejected": -93.1702651977539,
|
500 |
+
"rewards/accuracies": 0.875,
|
501 |
+
"rewards/chosen": 0.07231828570365906,
|
502 |
+
"rewards/margins": 0.24562585353851318,
|
503 |
+
"rewards/rejected": -0.17330753803253174,
|
504 |
+
"step": 31
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.2,
|
508 |
+
"learning_rate": 1.8463286419478252e-06,
|
509 |
+
"logits/chosen": -2.9383907318115234,
|
510 |
+
"logits/rejected": -2.880384922027588,
|
511 |
+
"loss": 0.5772,
|
512 |
+
"policy_logps/chosen": -118.6290283203125,
|
513 |
+
"policy_logps/rejected": -126.94461822509766,
|
514 |
+
"referece_logps/chosen": -118.98780822753906,
|
515 |
+
"referece_logps/rejected": -125.21376037597656,
|
516 |
+
"rewards/accuracies": 0.9375,
|
517 |
+
"rewards/chosen": 0.03587843477725983,
|
518 |
+
"rewards/margins": 0.20896492898464203,
|
519 |
+
"rewards/rejected": -0.173086479306221,
|
520 |
+
"step": 32
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.21,
|
524 |
+
"learning_rate": 1.835064131140081e-06,
|
525 |
+
"logits/chosen": -2.908090829849243,
|
526 |
+
"logits/rejected": -2.9141459465026855,
|
527 |
+
"loss": 0.5723,
|
528 |
+
"policy_logps/chosen": -132.4810333251953,
|
529 |
+
"policy_logps/rejected": -130.16603088378906,
|
530 |
+
"referece_logps/chosen": -132.7151336669922,
|
531 |
+
"referece_logps/rejected": -127.14649963378906,
|
532 |
+
"rewards/accuracies": 1.0,
|
533 |
+
"rewards/chosen": 0.02341010421514511,
|
534 |
+
"rewards/margins": 0.32536280155181885,
|
535 |
+
"rewards/rejected": -0.3019527196884155,
|
536 |
+
"step": 33
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.22,
|
540 |
+
"learning_rate": 1.8234381688461941e-06,
|
541 |
+
"logits/chosen": -2.9611878395080566,
|
542 |
+
"logits/rejected": -2.966728448867798,
|
543 |
+
"loss": 0.5734,
|
544 |
+
"policy_logps/chosen": -119.45679473876953,
|
545 |
+
"policy_logps/rejected": -118.76419830322266,
|
546 |
+
"referece_logps/chosen": -118.86337280273438,
|
547 |
+
"referece_logps/rejected": -115.91516876220703,
|
548 |
+
"rewards/accuracies": 0.8125,
|
549 |
+
"rewards/chosen": -0.059341806918382645,
|
550 |
+
"rewards/margins": 0.22556202113628387,
|
551 |
+
"rewards/rejected": -0.28490379452705383,
|
552 |
+
"step": 34
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.22,
|
556 |
+
"learning_rate": 1.8114557872800905e-06,
|
557 |
+
"logits/chosen": -2.967761993408203,
|
558 |
+
"logits/rejected": -2.900844097137451,
|
559 |
+
"loss": 0.5633,
|
560 |
+
"policy_logps/chosen": -130.78848266601562,
|
561 |
+
"policy_logps/rejected": -142.6917724609375,
|
562 |
+
"referece_logps/chosen": -130.37750244140625,
|
563 |
+
"referece_logps/rejected": -139.14178466796875,
|
564 |
+
"rewards/accuracies": 0.9375,
|
565 |
+
"rewards/chosen": -0.041097551584243774,
|
566 |
+
"rewards/margins": 0.31390050053596497,
|
567 |
+
"rewards/rejected": -0.35499805212020874,
|
568 |
+
"step": 35
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 0.23,
|
572 |
+
"learning_rate": 1.7991221729292058e-06,
|
573 |
+
"logits/chosen": -2.8585638999938965,
|
574 |
+
"logits/rejected": -2.90903377532959,
|
575 |
+
"loss": 0.5649,
|
576 |
+
"policy_logps/chosen": -137.8734893798828,
|
577 |
+
"policy_logps/rejected": -127.91438293457031,
|
578 |
+
"referece_logps/chosen": -137.9367218017578,
|
579 |
+
"referece_logps/rejected": -125.2115478515625,
|
580 |
+
"rewards/accuracies": 0.9375,
|
581 |
+
"rewards/chosen": 0.0063229575753211975,
|
582 |
+
"rewards/margins": 0.27660617232322693,
|
583 |
+
"rewards/rejected": -0.27028322219848633,
|
584 |
+
"step": 36
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.24,
|
588 |
+
"learning_rate": 1.7864426643095536e-06,
|
589 |
+
"logits/chosen": -2.9357798099517822,
|
590 |
+
"logits/rejected": -2.900618553161621,
|
591 |
+
"loss": 0.5592,
|
592 |
+
"policy_logps/chosen": -151.2121124267578,
|
593 |
+
"policy_logps/rejected": -134.10804748535156,
|
594 |
+
"referece_logps/chosen": -150.83583068847656,
|
595 |
+
"referece_logps/rejected": -131.0611572265625,
|
596 |
+
"rewards/accuracies": 0.875,
|
597 |
+
"rewards/chosen": -0.03762848675251007,
|
598 |
+
"rewards/margins": 0.26705947518348694,
|
599 |
+
"rewards/rejected": -0.3046879470348358,
|
600 |
+
"step": 37
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.24,
|
604 |
+
"learning_rate": 1.7734227496549878e-06,
|
605 |
+
"logits/chosen": -2.9032468795776367,
|
606 |
+
"logits/rejected": -2.9027702808380127,
|
607 |
+
"loss": 0.5684,
|
608 |
+
"policy_logps/chosen": -104.47734069824219,
|
609 |
+
"policy_logps/rejected": -106.55696105957031,
|
610 |
+
"referece_logps/chosen": -105.3730697631836,
|
611 |
+
"referece_logps/rejected": -104.14241027832031,
|
612 |
+
"rewards/accuracies": 0.9375,
|
613 |
+
"rewards/chosen": 0.0895722359418869,
|
614 |
+
"rewards/margins": 0.3310272991657257,
|
615 |
+
"rewards/rejected": -0.241455078125,
|
616 |
+
"step": 38
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 0.25,
|
620 |
+
"learning_rate": 1.7600680645416582e-06,
|
621 |
+
"logits/chosen": -2.9712843894958496,
|
622 |
+
"logits/rejected": -2.894430637359619,
|
623 |
+
"loss": 0.5499,
|
624 |
+
"policy_logps/chosen": -126.83047485351562,
|
625 |
+
"policy_logps/rejected": -138.54771423339844,
|
626 |
+
"referece_logps/chosen": -126.56389617919922,
|
627 |
+
"referece_logps/rejected": -135.42103576660156,
|
628 |
+
"rewards/accuracies": 0.875,
|
629 |
+
"rewards/chosen": -0.026657823473215103,
|
630 |
+
"rewards/margins": 0.2860097885131836,
|
631 |
+
"rewards/rejected": -0.312667578458786,
|
632 |
+
"step": 39
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.26,
|
636 |
+
"learning_rate": 1.7463843894486936e-06,
|
637 |
+
"logits/chosen": -2.942542552947998,
|
638 |
+
"logits/rejected": -2.9863080978393555,
|
639 |
+
"loss": 0.5534,
|
640 |
+
"policy_logps/chosen": -93.51473999023438,
|
641 |
+
"policy_logps/rejected": -94.46737670898438,
|
642 |
+
"referece_logps/chosen": -93.94270324707031,
|
643 |
+
"referece_logps/rejected": -91.81558227539062,
|
644 |
+
"rewards/accuracies": 0.9375,
|
645 |
+
"rewards/chosen": 0.04279506206512451,
|
646 |
+
"rewards/margins": 0.3079749345779419,
|
647 |
+
"rewards/rejected": -0.2651798725128174,
|
648 |
+
"step": 40
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.26,
|
652 |
+
"learning_rate": 1.7323776472561625e-06,
|
653 |
+
"logits/chosen": -2.9191946983337402,
|
654 |
+
"logits/rejected": -2.935122013092041,
|
655 |
+
"loss": 0.5682,
|
656 |
+
"policy_logps/chosen": -128.17813110351562,
|
657 |
+
"policy_logps/rejected": -139.06613159179688,
|
658 |
+
"referece_logps/chosen": -127.54570770263672,
|
659 |
+
"referece_logps/rejected": -135.201904296875,
|
660 |
+
"rewards/accuracies": 0.875,
|
661 |
+
"rewards/chosen": -0.06324195861816406,
|
662 |
+
"rewards/margins": 0.32317861914634705,
|
663 |
+
"rewards/rejected": -0.3864205777645111,
|
664 |
+
"step": 41
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.27,
|
668 |
+
"learning_rate": 1.7180539006813969e-06,
|
669 |
+
"logits/chosen": -2.920085906982422,
|
670 |
+
"logits/rejected": -2.906773567199707,
|
671 |
+
"loss": 0.5454,
|
672 |
+
"policy_logps/chosen": -126.83687591552734,
|
673 |
+
"policy_logps/rejected": -114.17430877685547,
|
674 |
+
"referece_logps/chosen": -126.77012634277344,
|
675 |
+
"referece_logps/rejected": -110.9568862915039,
|
676 |
+
"rewards/accuracies": 0.875,
|
677 |
+
"rewards/chosen": -0.006674099713563919,
|
678 |
+
"rewards/margins": 0.31506818532943726,
|
679 |
+
"rewards/rejected": -0.3217422664165497,
|
680 |
+
"step": 42
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.27,
|
684 |
+
"learning_rate": 1.7034193496547902e-06,
|
685 |
+
"logits/chosen": -2.8620564937591553,
|
686 |
+
"logits/rejected": -2.9222469329833984,
|
687 |
+
"loss": 0.534,
|
688 |
+
"policy_logps/chosen": -125.01854705810547,
|
689 |
+
"policy_logps/rejected": -116.95589447021484,
|
690 |
+
"referece_logps/chosen": -125.00530242919922,
|
691 |
+
"referece_logps/rejected": -113.22078704833984,
|
692 |
+
"rewards/accuracies": 0.9375,
|
693 |
+
"rewards/chosen": -0.0013249870389699936,
|
694 |
+
"rewards/margins": 0.3721860647201538,
|
695 |
+
"rewards/rejected": -0.37351107597351074,
|
696 |
+
"step": 43
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.28,
|
700 |
+
"learning_rate": 1.6884803286362e-06,
|
701 |
+
"logits/chosen": -2.8868565559387207,
|
702 |
+
"logits/rejected": -2.91511869430542,
|
703 |
+
"loss": 0.5459,
|
704 |
+
"policy_logps/chosen": -150.9369354248047,
|
705 |
+
"policy_logps/rejected": -144.1173858642578,
|
706 |
+
"referece_logps/chosen": -150.93002319335938,
|
707 |
+
"referece_logps/rejected": -139.8741455078125,
|
708 |
+
"rewards/accuracies": 0.875,
|
709 |
+
"rewards/chosen": -0.0006910450756549835,
|
710 |
+
"rewards/margins": 0.42363405227661133,
|
711 |
+
"rewards/rejected": -0.4243250787258148,
|
712 |
+
"step": 44
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.29,
|
716 |
+
"learning_rate": 1.673243303873124e-06,
|
717 |
+
"logits/chosen": -2.9313180446624756,
|
718 |
+
"logits/rejected": -2.9371540546417236,
|
719 |
+
"loss": 0.5569,
|
720 |
+
"policy_logps/chosen": -122.50914764404297,
|
721 |
+
"policy_logps/rejected": -110.94712829589844,
|
722 |
+
"referece_logps/chosen": -122.10940551757812,
|
723 |
+
"referece_logps/rejected": -108.29950714111328,
|
724 |
+
"rewards/accuracies": 0.6875,
|
725 |
+
"rewards/chosen": -0.03997454792261124,
|
726 |
+
"rewards/margins": 0.22478806972503662,
|
727 |
+
"rewards/rejected": -0.26476261019706726,
|
728 |
+
"step": 45
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.29,
|
732 |
+
"learning_rate": 1.6577148706018328e-06,
|
733 |
+
"logits/chosen": -2.894786834716797,
|
734 |
+
"logits/rejected": -2.977565288543701,
|
735 |
+
"loss": 0.5775,
|
736 |
+
"policy_logps/chosen": -114.12425231933594,
|
737 |
+
"policy_logps/rejected": -113.44467163085938,
|
738 |
+
"referece_logps/chosen": -112.93356323242188,
|
739 |
+
"referece_logps/rejected": -110.42334747314453,
|
740 |
+
"rewards/accuracies": 0.8125,
|
741 |
+
"rewards/chosen": -0.11906924843788147,
|
742 |
+
"rewards/margins": 0.18306350708007812,
|
743 |
+
"rewards/rejected": -0.3021327555179596,
|
744 |
+
"step": 46
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.3,
|
748 |
+
"learning_rate": 1.6419017501926656e-06,
|
749 |
+
"logits/chosen": -2.90000581741333,
|
750 |
+
"logits/rejected": -2.9254188537597656,
|
751 |
+
"loss": 0.5176,
|
752 |
+
"policy_logps/chosen": -128.19607543945312,
|
753 |
+
"policy_logps/rejected": -122.17625427246094,
|
754 |
+
"referece_logps/chosen": -128.63787841796875,
|
755 |
+
"referece_logps/rejected": -118.01435852050781,
|
756 |
+
"rewards/accuracies": 0.9375,
|
757 |
+
"rewards/chosen": 0.04418013244867325,
|
758 |
+
"rewards/margins": 0.4603692889213562,
|
759 |
+
"rewards/rejected": -0.41618919372558594,
|
760 |
+
"step": 47
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.31,
|
764 |
+
"learning_rate": 1.6258107872407374e-06,
|
765 |
+
"logits/chosen": -2.9072225093841553,
|
766 |
+
"logits/rejected": -2.9065234661102295,
|
767 |
+
"loss": 0.5243,
|
768 |
+
"policy_logps/chosen": -125.48599243164062,
|
769 |
+
"policy_logps/rejected": -129.7559814453125,
|
770 |
+
"referece_logps/chosen": -126.17718505859375,
|
771 |
+
"referece_logps/rejected": -127.1695785522461,
|
772 |
+
"rewards/accuracies": 0.875,
|
773 |
+
"rewards/chosen": 0.06911970674991608,
|
774 |
+
"rewards/margins": 0.32776087522506714,
|
775 |
+
"rewards/rejected": -0.25864115357398987,
|
776 |
+
"step": 48
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.31,
|
780 |
+
"learning_rate": 1.6094489466033042e-06,
|
781 |
+
"logits/chosen": -2.917146682739258,
|
782 |
+
"logits/rejected": -2.9667577743530273,
|
783 |
+
"loss": 0.5559,
|
784 |
+
"policy_logps/chosen": -108.18141174316406,
|
785 |
+
"policy_logps/rejected": -99.39623260498047,
|
786 |
+
"referece_logps/chosen": -108.76286315917969,
|
787 |
+
"referece_logps/rejected": -96.53907775878906,
|
788 |
+
"rewards/accuracies": 0.875,
|
789 |
+
"rewards/chosen": 0.0581454373896122,
|
790 |
+
"rewards/margins": 0.34386110305786133,
|
791 |
+
"rewards/rejected": -0.28571566939353943,
|
792 |
+
"step": 49
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 0.32,
|
796 |
+
"learning_rate": 1.5928233103850727e-06,
|
797 |
+
"logits/chosen": -2.906874179840088,
|
798 |
+
"logits/rejected": -2.919196844100952,
|
799 |
+
"loss": 0.5364,
|
800 |
+
"policy_logps/chosen": -161.1468048095703,
|
801 |
+
"policy_logps/rejected": -143.97592163085938,
|
802 |
+
"referece_logps/chosen": -160.62081909179688,
|
803 |
+
"referece_logps/rejected": -140.28585815429688,
|
804 |
+
"rewards/accuracies": 0.9375,
|
805 |
+
"rewards/chosen": -0.052598677575588226,
|
806 |
+
"rewards/margins": 0.31640806794166565,
|
807 |
+
"rewards/rejected": -0.3690067529678345,
|
808 |
+
"step": 50
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.33,
|
812 |
+
"learning_rate": 1.575941074872766e-06,
|
813 |
+
"logits/chosen": -2.957002878189087,
|
814 |
+
"logits/rejected": -2.9672722816467285,
|
815 |
+
"loss": 0.5172,
|
816 |
+
"policy_logps/chosen": -119.42903900146484,
|
817 |
+
"policy_logps/rejected": -116.86624145507812,
|
818 |
+
"referece_logps/chosen": -120.13378143310547,
|
819 |
+
"referece_logps/rejected": -113.2657241821289,
|
820 |
+
"rewards/accuracies": 1.0,
|
821 |
+
"rewards/chosen": 0.07047442346811295,
|
822 |
+
"rewards/margins": 0.4305253326892853,
|
823 |
+
"rewards/rejected": -0.36005088686943054,
|
824 |
+
"step": 51
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.33,
|
828 |
+
"learning_rate": 1.5588095474202594e-06,
|
829 |
+
"logits/chosen": -2.8591084480285645,
|
830 |
+
"logits/rejected": -2.8590025901794434,
|
831 |
+
"loss": 0.4933,
|
832 |
+
"policy_logps/chosen": -157.062744140625,
|
833 |
+
"policy_logps/rejected": -151.7144775390625,
|
834 |
+
"referece_logps/chosen": -156.53114318847656,
|
835 |
+
"referece_logps/rejected": -147.15911865234375,
|
836 |
+
"rewards/accuracies": 0.9375,
|
837 |
+
"rewards/chosen": -0.05316000431776047,
|
838 |
+
"rewards/margins": 0.4023759067058563,
|
839 |
+
"rewards/rejected": -0.4555359482765198,
|
840 |
+
"step": 52
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 0.34,
|
844 |
+
"learning_rate": 1.5414361432856474e-06,
|
845 |
+
"logits/chosen": -2.9438529014587402,
|
846 |
+
"logits/rejected": -2.9987499713897705,
|
847 |
+
"loss": 0.4979,
|
848 |
+
"policy_logps/chosen": -117.94309997558594,
|
849 |
+
"policy_logps/rejected": -108.414306640625,
|
850 |
+
"referece_logps/chosen": -118.55531311035156,
|
851 |
+
"referece_logps/rejected": -104.54682922363281,
|
852 |
+
"rewards/accuracies": 0.9375,
|
853 |
+
"rewards/chosen": 0.061221349984407425,
|
854 |
+
"rewards/margins": 0.4479690194129944,
|
855 |
+
"rewards/rejected": -0.38674765825271606,
|
856 |
+
"step": 53
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.34,
|
860 |
+
"learning_rate": 1.5238283824216013e-06,
|
861 |
+
"logits/chosen": -2.9244260787963867,
|
862 |
+
"logits/rejected": -2.9373199939727783,
|
863 |
+
"loss": 0.4961,
|
864 |
+
"policy_logps/chosen": -119.873779296875,
|
865 |
+
"policy_logps/rejected": -108.0604248046875,
|
866 |
+
"referece_logps/chosen": -120.80511474609375,
|
867 |
+
"referece_logps/rejected": -104.79627990722656,
|
868 |
+
"rewards/accuracies": 0.9375,
|
869 |
+
"rewards/chosen": 0.09313352406024933,
|
870 |
+
"rewards/margins": 0.4195476770401001,
|
871 |
+
"rewards/rejected": -0.32641416788101196,
|
872 |
+
"step": 54
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.35,
|
876 |
+
"learning_rate": 1.5059938862204125e-06,
|
877 |
+
"logits/chosen": -2.920050621032715,
|
878 |
+
"logits/rejected": -2.9494502544403076,
|
879 |
+
"loss": 0.5339,
|
880 |
+
"policy_logps/chosen": -128.6884307861328,
|
881 |
+
"policy_logps/rejected": -124.91862487792969,
|
882 |
+
"referece_logps/chosen": -127.86734008789062,
|
883 |
+
"referece_logps/rejected": -120.62930297851562,
|
884 |
+
"rewards/accuracies": 0.875,
|
885 |
+
"rewards/chosen": -0.08210951089859009,
|
886 |
+
"rewards/margins": 0.34682315587997437,
|
887 |
+
"rewards/rejected": -0.42893266677856445,
|
888 |
+
"step": 55
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.36,
|
892 |
+
"learning_rate": 1.4879403742151283e-06,
|
893 |
+
"logits/chosen": -2.907794713973999,
|
894 |
+
"logits/rejected": -2.9134182929992676,
|
895 |
+
"loss": 0.5389,
|
896 |
+
"policy_logps/chosen": -129.15188598632812,
|
897 |
+
"policy_logps/rejected": -135.58035278320312,
|
898 |
+
"referece_logps/chosen": -127.82069396972656,
|
899 |
+
"referece_logps/rejected": -131.39085388183594,
|
900 |
+
"rewards/accuracies": 0.6875,
|
901 |
+
"rewards/chosen": -0.13311973214149475,
|
902 |
+
"rewards/margins": 0.28583019971847534,
|
903 |
+
"rewards/rejected": -0.4189499020576477,
|
904 |
+
"step": 56
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 0.36,
|
908 |
+
"learning_rate": 1.4696756607382058e-06,
|
909 |
+
"logits/chosen": -2.9352166652679443,
|
910 |
+
"logits/rejected": -2.9330966472625732,
|
911 |
+
"loss": 0.543,
|
912 |
+
"policy_logps/chosen": -125.51739501953125,
|
913 |
+
"policy_logps/rejected": -128.10951232910156,
|
914 |
+
"referece_logps/chosen": -124.24830627441406,
|
915 |
+
"referece_logps/rejected": -123.51809692382812,
|
916 |
+
"rewards/accuracies": 0.75,
|
917 |
+
"rewards/chosen": -0.12690886855125427,
|
918 |
+
"rewards/margins": 0.33223241567611694,
|
919 |
+
"rewards/rejected": -0.4591412842273712,
|
920 |
+
"step": 57
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.37,
|
924 |
+
"learning_rate": 1.4512076515391374e-06,
|
925 |
+
"logits/chosen": -2.941624164581299,
|
926 |
+
"logits/rejected": -2.9078333377838135,
|
927 |
+
"loss": 0.4758,
|
928 |
+
"policy_logps/chosen": -109.23553466796875,
|
929 |
+
"policy_logps/rejected": -104.69176483154297,
|
930 |
+
"referece_logps/chosen": -110.22058868408203,
|
931 |
+
"referece_logps/rejected": -100.0502700805664,
|
932 |
+
"rewards/accuracies": 1.0,
|
933 |
+
"rewards/chosen": 0.09850560873746872,
|
934 |
+
"rewards/margins": 0.5626559257507324,
|
935 |
+
"rewards/rejected": -0.4641503393650055,
|
936 |
+
"step": 58
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.38,
|
940 |
+
"learning_rate": 1.432544340362501e-06,
|
941 |
+
"logits/chosen": -2.972963809967041,
|
942 |
+
"logits/rejected": -2.9390883445739746,
|
943 |
+
"loss": 0.4904,
|
944 |
+
"policy_logps/chosen": -95.29005432128906,
|
945 |
+
"policy_logps/rejected": -121.40338897705078,
|
946 |
+
"referece_logps/chosen": -95.24687194824219,
|
947 |
+
"referece_logps/rejected": -116.24635314941406,
|
948 |
+
"rewards/accuracies": 0.9375,
|
949 |
+
"rewards/chosen": -0.004318548366427422,
|
950 |
+
"rewards/margins": 0.5113850235939026,
|
951 |
+
"rewards/rejected": -0.515703558921814,
|
952 |
+
"step": 59
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 0.38,
|
956 |
+
"learning_rate": 1.4136938054879282e-06,
|
957 |
+
"logits/chosen": -2.9395623207092285,
|
958 |
+
"logits/rejected": -2.953756809234619,
|
959 |
+
"loss": 0.5286,
|
960 |
+
"policy_logps/chosen": -122.0515365600586,
|
961 |
+
"policy_logps/rejected": -128.63021850585938,
|
962 |
+
"referece_logps/chosen": -120.7651596069336,
|
963 |
+
"referece_logps/rejected": -123.8788070678711,
|
964 |
+
"rewards/accuracies": 0.875,
|
965 |
+
"rewards/chosen": -0.1286384016275406,
|
966 |
+
"rewards/margins": 0.34650319814682007,
|
967 |
+
"rewards/rejected": -0.47514158487319946,
|
968 |
+
"step": 60
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.39,
|
972 |
+
"learning_rate": 1.3946642062334763e-06,
|
973 |
+
"logits/chosen": -2.9107141494750977,
|
974 |
+
"logits/rejected": -2.9332330226898193,
|
975 |
+
"loss": 0.4832,
|
976 |
+
"policy_logps/chosen": -121.9334716796875,
|
977 |
+
"policy_logps/rejected": -119.00639343261719,
|
978 |
+
"referece_logps/chosen": -122.2487564086914,
|
979 |
+
"referece_logps/rejected": -114.04248809814453,
|
980 |
+
"rewards/accuracies": 1.0,
|
981 |
+
"rewards/chosen": 0.03152900189161301,
|
982 |
+
"rewards/margins": 0.5279202461242676,
|
983 |
+
"rewards/rejected": -0.49639129638671875,
|
984 |
+
"step": 61
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.4,
|
988 |
+
"learning_rate": 1.37546377942393e-06,
|
989 |
+
"logits/chosen": -2.950266122817993,
|
990 |
+
"logits/rejected": -2.9494924545288086,
|
991 |
+
"loss": 0.5178,
|
992 |
+
"policy_logps/chosen": -104.2540283203125,
|
993 |
+
"policy_logps/rejected": -125.53955841064453,
|
994 |
+
"referece_logps/chosen": -104.66864776611328,
|
995 |
+
"referece_logps/rejected": -121.41145324707031,
|
996 |
+
"rewards/accuracies": 0.9375,
|
997 |
+
"rewards/chosen": 0.04146187752485275,
|
998 |
+
"rewards/margins": 0.45427215099334717,
|
999 |
+
"rewards/rejected": -0.4128102958202362,
|
1000 |
+
"step": 62
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 0.4,
|
1004 |
+
"learning_rate": 1.3561008358255469e-06,
|
1005 |
+
"logits/chosen": -2.917292594909668,
|
1006 |
+
"logits/rejected": -2.952850818634033,
|
1007 |
+
"loss": 0.5263,
|
1008 |
+
"policy_logps/chosen": -118.34769439697266,
|
1009 |
+
"policy_logps/rejected": -112.80188751220703,
|
1010 |
+
"referece_logps/chosen": -118.5436782836914,
|
1011 |
+
"referece_logps/rejected": -109.08131408691406,
|
1012 |
+
"rewards/accuracies": 0.8125,
|
1013 |
+
"rewards/chosen": 0.01959807053208351,
|
1014 |
+
"rewards/margins": 0.39165574312210083,
|
1015 |
+
"rewards/rejected": -0.3720576763153076,
|
1016 |
+
"step": 63
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.41,
|
1020 |
+
"learning_rate": 1.3365837565488062e-06,
|
1021 |
+
"logits/chosen": -2.92209529876709,
|
1022 |
+
"logits/rejected": -2.9668972492218018,
|
1023 |
+
"loss": 0.4813,
|
1024 |
+
"policy_logps/chosen": -161.57546997070312,
|
1025 |
+
"policy_logps/rejected": -137.75039672851562,
|
1026 |
+
"referece_logps/chosen": -161.21104431152344,
|
1027 |
+
"referece_logps/rejected": -130.89552307128906,
|
1028 |
+
"rewards/accuracies": 1.0,
|
1029 |
+
"rewards/chosen": -0.03644174337387085,
|
1030 |
+
"rewards/margins": 0.6490457057952881,
|
1031 |
+
"rewards/rejected": -0.6854873895645142,
|
1032 |
+
"step": 64
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.41,
|
1036 |
+
"learning_rate": 1.3169209894207027e-06,
|
1037 |
+
"logits/chosen": -2.9616472721099854,
|
1038 |
+
"logits/rejected": -2.961239814758301,
|
1039 |
+
"loss": 0.4486,
|
1040 |
+
"policy_logps/chosen": -154.44467163085938,
|
1041 |
+
"policy_logps/rejected": -158.21372985839844,
|
1042 |
+
"referece_logps/chosen": -154.07650756835938,
|
1043 |
+
"referece_logps/rejected": -151.34902954101562,
|
1044 |
+
"rewards/accuracies": 0.9375,
|
1045 |
+
"rewards/chosen": -0.03681756183505058,
|
1046 |
+
"rewards/margins": 0.6496531367301941,
|
1047 |
+
"rewards/rejected": -0.6864707469940186,
|
1048 |
+
"step": 65
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 0.42,
|
1052 |
+
"learning_rate": 1.2971210453281673e-06,
|
1053 |
+
"logits/chosen": -2.892361640930176,
|
1054 |
+
"logits/rejected": -2.8887600898742676,
|
1055 |
+
"loss": 0.4939,
|
1056 |
+
"policy_logps/chosen": -121.81805419921875,
|
1057 |
+
"policy_logps/rejected": -114.29660034179688,
|
1058 |
+
"referece_logps/chosen": -122.0481948852539,
|
1059 |
+
"referece_logps/rejected": -110.4261474609375,
|
1060 |
+
"rewards/accuracies": 0.9375,
|
1061 |
+
"rewards/chosen": 0.023014426231384277,
|
1062 |
+
"rewards/margins": 0.41005975008010864,
|
1063 |
+
"rewards/rejected": -0.38704538345336914,
|
1064 |
+
"step": 66
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.43,
|
1068 |
+
"learning_rate": 1.2771924945341906e-06,
|
1069 |
+
"logits/chosen": -2.91727352142334,
|
1070 |
+
"logits/rejected": -2.922391891479492,
|
1071 |
+
"loss": 0.4868,
|
1072 |
+
"policy_logps/chosen": -111.62061309814453,
|
1073 |
+
"policy_logps/rejected": -106.5035400390625,
|
1074 |
+
"referece_logps/chosen": -112.6988525390625,
|
1075 |
+
"referece_logps/rejected": -101.50572967529297,
|
1076 |
+
"rewards/accuracies": 1.0,
|
1077 |
+
"rewards/chosen": 0.10782448947429657,
|
1078 |
+
"rewards/margins": 0.6076046228408813,
|
1079 |
+
"rewards/rejected": -0.49978014826774597,
|
1080 |
+
"step": 67
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.43,
|
1084 |
+
"learning_rate": 1.257143962968246e-06,
|
1085 |
+
"logits/chosen": -2.9374663829803467,
|
1086 |
+
"logits/rejected": -2.9512386322021484,
|
1087 |
+
"loss": 0.5144,
|
1088 |
+
"policy_logps/chosen": -149.2052001953125,
|
1089 |
+
"policy_logps/rejected": -130.6556396484375,
|
1090 |
+
"referece_logps/chosen": -147.80715942382812,
|
1091 |
+
"referece_logps/rejected": -125.28959655761719,
|
1092 |
+
"rewards/accuracies": 0.75,
|
1093 |
+
"rewards/chosen": -0.13980263471603394,
|
1094 |
+
"rewards/margins": 0.39680200815200806,
|
1095 |
+
"rewards/rejected": -0.536604642868042,
|
1096 |
+
"step": 68
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.44,
|
1100 |
+
"learning_rate": 1.236984128492619e-06,
|
1101 |
+
"logits/chosen": -2.9574966430664062,
|
1102 |
+
"logits/rejected": -2.9541845321655273,
|
1103 |
+
"loss": 0.4811,
|
1104 |
+
"policy_logps/chosen": -105.58607482910156,
|
1105 |
+
"policy_logps/rejected": -107.0927734375,
|
1106 |
+
"referece_logps/chosen": -106.00244903564453,
|
1107 |
+
"referece_logps/rejected": -103.1064453125,
|
1108 |
+
"rewards/accuracies": 0.9375,
|
1109 |
+
"rewards/chosen": 0.041637033224105835,
|
1110 |
+
"rewards/margins": 0.44027072191238403,
|
1111 |
+
"rewards/rejected": -0.3986337184906006,
|
1112 |
+
"step": 69
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.45,
|
1116 |
+
"learning_rate": 1.2167217171462566e-06,
|
1117 |
+
"logits/chosen": -2.96567964553833,
|
1118 |
+
"logits/rejected": -2.9865453243255615,
|
1119 |
+
"loss": 0.4782,
|
1120 |
+
"policy_logps/chosen": -137.23434448242188,
|
1121 |
+
"policy_logps/rejected": -116.43749237060547,
|
1122 |
+
"referece_logps/chosen": -137.0900421142578,
|
1123 |
+
"referece_logps/rejected": -110.79519653320312,
|
1124 |
+
"rewards/accuracies": 0.875,
|
1125 |
+
"rewards/chosen": -0.014430008828639984,
|
1126 |
+
"rewards/margins": 0.5497984886169434,
|
1127 |
+
"rewards/rejected": -0.5642285346984863,
|
1128 |
+
"step": 70
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.45,
|
1132 |
+
"learning_rate": 1.1963654993677643e-06,
|
1133 |
+
"logits/chosen": -2.9047865867614746,
|
1134 |
+
"logits/rejected": -2.9375927448272705,
|
1135 |
+
"loss": 0.4831,
|
1136 |
+
"policy_logps/chosen": -142.0609588623047,
|
1137 |
+
"policy_logps/rejected": -138.23785400390625,
|
1138 |
+
"referece_logps/chosen": -140.9311981201172,
|
1139 |
+
"referece_logps/rejected": -132.38949584960938,
|
1140 |
+
"rewards/accuracies": 0.9375,
|
1141 |
+
"rewards/chosen": -0.1129767894744873,
|
1142 |
+
"rewards/margins": 0.47185903787612915,
|
1143 |
+
"rewards/rejected": -0.5848358869552612,
|
1144 |
+
"step": 71
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.46,
|
1148 |
+
"learning_rate": 1.1759242861991854e-06,
|
1149 |
+
"logits/chosen": -2.9874184131622314,
|
1150 |
+
"logits/rejected": -2.9638171195983887,
|
1151 |
+
"loss": 0.4436,
|
1152 |
+
"policy_logps/chosen": -111.93683624267578,
|
1153 |
+
"policy_logps/rejected": -113.12979888916016,
|
1154 |
+
"referece_logps/chosen": -111.51397705078125,
|
1155 |
+
"referece_logps/rejected": -107.90960693359375,
|
1156 |
+
"rewards/accuracies": 0.9375,
|
1157 |
+
"rewards/chosen": -0.042286355048418045,
|
1158 |
+
"rewards/margins": 0.4797336161136627,
|
1159 |
+
"rewards/rejected": -0.5220199227333069,
|
1160 |
+
"step": 72
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.47,
|
1164 |
+
"learning_rate": 1.155406925472205e-06,
|
1165 |
+
"logits/chosen": -2.927311420440674,
|
1166 |
+
"logits/rejected": -2.921337366104126,
|
1167 |
+
"loss": 0.4284,
|
1168 |
+
"policy_logps/chosen": -147.83377075195312,
|
1169 |
+
"policy_logps/rejected": -148.07089233398438,
|
1170 |
+
"referece_logps/chosen": -147.18499755859375,
|
1171 |
+
"referece_logps/rejected": -140.68211364746094,
|
1172 |
+
"rewards/accuracies": 1.0,
|
1173 |
+
"rewards/chosen": -0.0648760199546814,
|
1174 |
+
"rewards/margins": 0.6740000247955322,
|
1175 |
+
"rewards/rejected": -0.7388760447502136,
|
1176 |
+
"step": 73
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.47,
|
1180 |
+
"learning_rate": 1.1348222979784287e-06,
|
1181 |
+
"logits/chosen": -2.9232394695281982,
|
1182 |
+
"logits/rejected": -2.9430999755859375,
|
1183 |
+
"loss": 0.5002,
|
1184 |
+
"policy_logps/chosen": -143.42274475097656,
|
1185 |
+
"policy_logps/rejected": -143.17144775390625,
|
1186 |
+
"referece_logps/chosen": -141.336669921875,
|
1187 |
+
"referece_logps/rejected": -136.30712890625,
|
1188 |
+
"rewards/accuracies": 0.9375,
|
1189 |
+
"rewards/chosen": -0.20860746502876282,
|
1190 |
+
"rewards/margins": 0.4778253436088562,
|
1191 |
+
"rewards/rejected": -0.6864327788352966,
|
1192 |
+
"step": 74
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.48,
|
1196 |
+
"learning_rate": 1.1141793136253986e-06,
|
1197 |
+
"logits/chosen": -2.8802056312561035,
|
1198 |
+
"logits/rejected": -2.9181809425354004,
|
1199 |
+
"loss": 0.5141,
|
1200 |
+
"policy_logps/chosen": -155.84146118164062,
|
1201 |
+
"policy_logps/rejected": -145.16802978515625,
|
1202 |
+
"referece_logps/chosen": -154.25274658203125,
|
1203 |
+
"referece_logps/rejected": -140.40045166015625,
|
1204 |
+
"rewards/accuracies": 0.8125,
|
1205 |
+
"rewards/chosen": -0.15887098014354706,
|
1206 |
+
"rewards/margins": 0.31788796186447144,
|
1207 |
+
"rewards/rejected": -0.4767589569091797,
|
1208 |
+
"step": 75
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.48,
|
1212 |
+
"learning_rate": 1.09348690758e-06,
|
1213 |
+
"logits/chosen": -2.921013355255127,
|
1214 |
+
"logits/rejected": -2.949887275695801,
|
1215 |
+
"loss": 0.4978,
|
1216 |
+
"policy_logps/chosen": -140.55694580078125,
|
1217 |
+
"policy_logps/rejected": -137.7884521484375,
|
1218 |
+
"referece_logps/chosen": -139.3011474609375,
|
1219 |
+
"referece_logps/rejected": -130.94146728515625,
|
1220 |
+
"rewards/accuracies": 0.9375,
|
1221 |
+
"rewards/chosen": -0.12557877600193024,
|
1222 |
+
"rewards/margins": 0.5591215491294861,
|
1223 |
+
"rewards/rejected": -0.6847003102302551,
|
1224 |
+
"step": 76
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.49,
|
1228 |
+
"learning_rate": 1.072754036400944e-06,
|
1229 |
+
"logits/chosen": -2.9696455001831055,
|
1230 |
+
"logits/rejected": -2.9857373237609863,
|
1231 |
+
"loss": 0.417,
|
1232 |
+
"policy_logps/chosen": -113.93096923828125,
|
1233 |
+
"policy_logps/rejected": -107.09919738769531,
|
1234 |
+
"referece_logps/chosen": -115.27886962890625,
|
1235 |
+
"referece_logps/rejected": -102.10234069824219,
|
1236 |
+
"rewards/accuracies": 1.0,
|
1237 |
+
"rewards/chosen": 0.1347896158695221,
|
1238 |
+
"rewards/margins": 0.6344748139381409,
|
1239 |
+
"rewards/rejected": -0.49968522787094116,
|
1240 |
+
"step": 77
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"epoch": 0.5,
|
1244 |
+
"learning_rate": 1.0519896741619803e-06,
|
1245 |
+
"logits/chosen": -2.919851303100586,
|
1246 |
+
"logits/rejected": -2.9218404293060303,
|
1247 |
+
"loss": 0.4688,
|
1248 |
+
"policy_logps/chosen": -155.71444702148438,
|
1249 |
+
"policy_logps/rejected": -144.62152099609375,
|
1250 |
+
"referece_logps/chosen": -155.02752685546875,
|
1251 |
+
"referece_logps/rejected": -138.43026733398438,
|
1252 |
+
"rewards/accuracies": 0.8125,
|
1253 |
+
"rewards/chosen": -0.0686924085021019,
|
1254 |
+
"rewards/margins": 0.5504311323165894,
|
1255 |
+
"rewards/rejected": -0.6191235184669495,
|
1256 |
+
"step": 78
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.5,
|
1260 |
+
"learning_rate": 1.031202808567539e-06,
|
1261 |
+
"logits/chosen": -2.8995673656463623,
|
1262 |
+
"logits/rejected": -2.930441379547119,
|
1263 |
+
"loss": 0.4539,
|
1264 |
+
"policy_logps/chosen": -155.89486694335938,
|
1265 |
+
"policy_logps/rejected": -133.66708374023438,
|
1266 |
+
"referece_logps/chosen": -154.44532775878906,
|
1267 |
+
"referece_logps/rejected": -126.08793640136719,
|
1268 |
+
"rewards/accuracies": 0.9375,
|
1269 |
+
"rewards/chosen": -0.14495408535003662,
|
1270 |
+
"rewards/margins": 0.6129606366157532,
|
1271 |
+
"rewards/rejected": -0.7579147815704346,
|
1272 |
+
"step": 79
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.51,
|
1276 |
+
"learning_rate": 1.0104024370624642e-06,
|
1277 |
+
"logits/chosen": -2.9370193481445312,
|
1278 |
+
"logits/rejected": -2.9806201457977295,
|
1279 |
+
"loss": 0.4106,
|
1280 |
+
"policy_logps/chosen": -134.17471313476562,
|
1281 |
+
"policy_logps/rejected": -112.07872772216797,
|
1282 |
+
"referece_logps/chosen": -134.83750915527344,
|
1283 |
+
"referece_logps/rejected": -105.02826690673828,
|
1284 |
+
"rewards/accuracies": 0.9375,
|
1285 |
+
"rewards/chosen": 0.06628021597862244,
|
1286 |
+
"rewards/margins": 0.7713260650634766,
|
1287 |
+
"rewards/rejected": -0.7050458192825317,
|
1288 |
+
"step": 80
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 0.52,
|
1292 |
+
"learning_rate": 9.895975629375357e-07,
|
1293 |
+
"logits/chosen": -2.9489431381225586,
|
1294 |
+
"logits/rejected": -2.931128978729248,
|
1295 |
+
"loss": 0.4902,
|
1296 |
+
"policy_logps/chosen": -132.9930877685547,
|
1297 |
+
"policy_logps/rejected": -148.03472900390625,
|
1298 |
+
"referece_logps/chosen": -131.95632934570312,
|
1299 |
+
"referece_logps/rejected": -141.67227172851562,
|
1300 |
+
"rewards/accuracies": 0.9375,
|
1301 |
+
"rewards/chosen": -0.1036761999130249,
|
1302 |
+
"rewards/margins": 0.5325698852539062,
|
1303 |
+
"rewards/rejected": -0.6362460851669312,
|
1304 |
+
"step": 81
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.52,
|
1308 |
+
"learning_rate": 9.687971914324607e-07,
|
1309 |
+
"logits/chosen": -2.911447525024414,
|
1310 |
+
"logits/rejected": -2.9363858699798584,
|
1311 |
+
"loss": 0.4865,
|
1312 |
+
"policy_logps/chosen": -136.85560607910156,
|
1313 |
+
"policy_logps/rejected": -110.8121337890625,
|
1314 |
+
"referece_logps/chosen": -135.94354248046875,
|
1315 |
+
"referece_logps/rejected": -105.58758544921875,
|
1316 |
+
"rewards/accuracies": 0.9375,
|
1317 |
+
"rewards/chosen": -0.09120647609233856,
|
1318 |
+
"rewards/margins": 0.4312480390071869,
|
1319 |
+
"rewards/rejected": -0.5224545001983643,
|
1320 |
+
"step": 82
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 0.53,
|
1324 |
+
"learning_rate": 9.480103258380197e-07,
|
1325 |
+
"logits/chosen": -2.9371180534362793,
|
1326 |
+
"logits/rejected": -2.9503769874572754,
|
1327 |
+
"loss": 0.4557,
|
1328 |
+
"policy_logps/chosen": -150.19725036621094,
|
1329 |
+
"policy_logps/rejected": -149.049072265625,
|
1330 |
+
"referece_logps/chosen": -147.80014038085938,
|
1331 |
+
"referece_logps/rejected": -141.38333129882812,
|
1332 |
+
"rewards/accuracies": 0.9375,
|
1333 |
+
"rewards/chosen": -0.23970948159694672,
|
1334 |
+
"rewards/margins": 0.5268632173538208,
|
1335 |
+
"rewards/rejected": -0.7665727138519287,
|
1336 |
+
"step": 83
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 0.54,
|
1340 |
+
"learning_rate": 9.272459635990562e-07,
|
1341 |
+
"logits/chosen": -2.914623737335205,
|
1342 |
+
"logits/rejected": -2.909700393676758,
|
1343 |
+
"loss": 0.4753,
|
1344 |
+
"policy_logps/chosen": -149.44277954101562,
|
1345 |
+
"policy_logps/rejected": -158.23593139648438,
|
1346 |
+
"referece_logps/chosen": -147.42015075683594,
|
1347 |
+
"referece_logps/rejected": -149.85214233398438,
|
1348 |
+
"rewards/accuracies": 0.875,
|
1349 |
+
"rewards/chosen": -0.2022620439529419,
|
1350 |
+
"rewards/margins": 0.6361156702041626,
|
1351 |
+
"rewards/rejected": -0.838377833366394,
|
1352 |
+
"step": 84
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.54,
|
1356 |
+
"learning_rate": 9.065130924199998e-07,
|
1357 |
+
"logits/chosen": -2.964315414428711,
|
1358 |
+
"logits/rejected": -2.9234838485717773,
|
1359 |
+
"loss": 0.5092,
|
1360 |
+
"policy_logps/chosen": -133.36880493164062,
|
1361 |
+
"policy_logps/rejected": -146.08169555664062,
|
1362 |
+
"referece_logps/chosen": -132.2157440185547,
|
1363 |
+
"referece_logps/rejected": -140.08538818359375,
|
1364 |
+
"rewards/accuracies": 0.875,
|
1365 |
+
"rewards/chosen": -0.11530620604753494,
|
1366 |
+
"rewards/margins": 0.4843238890171051,
|
1367 |
+
"rewards/rejected": -0.5996301174163818,
|
1368 |
+
"step": 85
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.55,
|
1372 |
+
"learning_rate": 8.858206863746017e-07,
|
1373 |
+
"logits/chosen": -2.909698486328125,
|
1374 |
+
"logits/rejected": -2.918955087661743,
|
1375 |
+
"loss": 0.4525,
|
1376 |
+
"policy_logps/chosen": -132.2825469970703,
|
1377 |
+
"policy_logps/rejected": -136.70962524414062,
|
1378 |
+
"referece_logps/chosen": -130.87799072265625,
|
1379 |
+
"referece_logps/rejected": -130.4683837890625,
|
1380 |
+
"rewards/accuracies": 0.8125,
|
1381 |
+
"rewards/chosen": -0.1404554843902588,
|
1382 |
+
"rewards/margins": 0.48366838693618774,
|
1383 |
+
"rewards/rejected": -0.6241238713264465,
|
1384 |
+
"step": 86
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.56,
|
1388 |
+
"learning_rate": 8.651777020215712e-07,
|
1389 |
+
"logits/chosen": -2.8775806427001953,
|
1390 |
+
"logits/rejected": -2.876236915588379,
|
1391 |
+
"loss": 0.4829,
|
1392 |
+
"policy_logps/chosen": -138.22640991210938,
|
1393 |
+
"policy_logps/rejected": -135.67745971679688,
|
1394 |
+
"referece_logps/chosen": -137.68087768554688,
|
1395 |
+
"referece_logps/rejected": -129.38088989257812,
|
1396 |
+
"rewards/accuracies": 1.0,
|
1397 |
+
"rewards/chosen": -0.05455498397350311,
|
1398 |
+
"rewards/margins": 0.5751017928123474,
|
1399 |
+
"rewards/rejected": -0.6296567916870117,
|
1400 |
+
"step": 87
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.56,
|
1404 |
+
"learning_rate": 8.445930745277951e-07,
|
1405 |
+
"logits/chosen": -2.9498825073242188,
|
1406 |
+
"logits/rejected": -2.9456593990325928,
|
1407 |
+
"loss": 0.4666,
|
1408 |
+
"policy_logps/chosen": -99.36846160888672,
|
1409 |
+
"policy_logps/rejected": -110.91441345214844,
|
1410 |
+
"referece_logps/chosen": -97.86239624023438,
|
1411 |
+
"referece_logps/rejected": -104.65141296386719,
|
1412 |
+
"rewards/accuracies": 0.875,
|
1413 |
+
"rewards/chosen": -0.15060700476169586,
|
1414 |
+
"rewards/margins": 0.47569307684898376,
|
1415 |
+
"rewards/rejected": -0.6263000965118408,
|
1416 |
+
"step": 88
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.57,
|
1420 |
+
"learning_rate": 8.240757138008148e-07,
|
1421 |
+
"logits/chosen": -2.9100852012634277,
|
1422 |
+
"logits/rejected": -2.9250974655151367,
|
1423 |
+
"loss": 0.4921,
|
1424 |
+
"policy_logps/chosen": -144.23516845703125,
|
1425 |
+
"policy_logps/rejected": -140.12838745117188,
|
1426 |
+
"referece_logps/chosen": -142.4854736328125,
|
1427 |
+
"referece_logps/rejected": -133.91094970703125,
|
1428 |
+
"rewards/accuracies": 0.875,
|
1429 |
+
"rewards/chosen": -0.17496907711029053,
|
1430 |
+
"rewards/margins": 0.4467761516571045,
|
1431 |
+
"rewards/rejected": -0.621745228767395,
|
1432 |
+
"step": 89
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 0.57,
|
1436 |
+
"learning_rate": 8.036345006322358e-07,
|
1437 |
+
"logits/chosen": -2.9227583408355713,
|
1438 |
+
"logits/rejected": -2.936587333679199,
|
1439 |
+
"loss": 0.4516,
|
1440 |
+
"policy_logps/chosen": -130.54054260253906,
|
1441 |
+
"policy_logps/rejected": -137.36415100097656,
|
1442 |
+
"referece_logps/chosen": -129.6831512451172,
|
1443 |
+
"referece_logps/rejected": -129.63467407226562,
|
1444 |
+
"rewards/accuracies": 0.9375,
|
1445 |
+
"rewards/chosen": -0.08573976159095764,
|
1446 |
+
"rewards/margins": 0.6872075796127319,
|
1447 |
+
"rewards/rejected": -0.772947371006012,
|
1448 |
+
"step": 90
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.58,
|
1452 |
+
"learning_rate": 7.832782828537435e-07,
|
1453 |
+
"logits/chosen": -2.946342706680298,
|
1454 |
+
"logits/rejected": -2.9744181632995605,
|
1455 |
+
"loss": 0.4716,
|
1456 |
+
"policy_logps/chosen": -155.42410278320312,
|
1457 |
+
"policy_logps/rejected": -155.65284729003906,
|
1458 |
+
"referece_logps/chosen": -153.79293823242188,
|
1459 |
+
"referece_logps/rejected": -145.5734100341797,
|
1460 |
+
"rewards/accuracies": 0.9375,
|
1461 |
+
"rewards/chosen": -0.16311725974082947,
|
1462 |
+
"rewards/margins": 0.8448256850242615,
|
1463 |
+
"rewards/rejected": -1.0079429149627686,
|
1464 |
+
"step": 91
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 0.59,
|
1468 |
+
"learning_rate": 7.630158715073812e-07,
|
1469 |
+
"logits/chosen": -2.9480092525482178,
|
1470 |
+
"logits/rejected": -2.971871852874756,
|
1471 |
+
"loss": 0.4588,
|
1472 |
+
"policy_logps/chosen": -117.96566772460938,
|
1473 |
+
"policy_logps/rejected": -120.06287384033203,
|
1474 |
+
"referece_logps/chosen": -117.35060119628906,
|
1475 |
+
"referece_logps/rejected": -114.15763092041016,
|
1476 |
+
"rewards/accuracies": 0.875,
|
1477 |
+
"rewards/chosen": -0.06150689721107483,
|
1478 |
+
"rewards/margins": 0.5290161371231079,
|
1479 |
+
"rewards/rejected": -0.5905230045318604,
|
1480 |
+
"step": 92
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 0.59,
|
1484 |
+
"learning_rate": 7.428560370317541e-07,
|
1485 |
+
"logits/chosen": -2.9216105937957764,
|
1486 |
+
"logits/rejected": -2.973964214324951,
|
1487 |
+
"loss": 0.4124,
|
1488 |
+
"policy_logps/chosen": -118.88021850585938,
|
1489 |
+
"policy_logps/rejected": -116.6799087524414,
|
1490 |
+
"referece_logps/chosen": -118.77764892578125,
|
1491 |
+
"referece_logps/rejected": -110.41334533691406,
|
1492 |
+
"rewards/accuracies": 0.9375,
|
1493 |
+
"rewards/chosen": -0.010256083682179451,
|
1494 |
+
"rewards/margins": 0.6163986921310425,
|
1495 |
+
"rewards/rejected": -0.6266547441482544,
|
1496 |
+
"step": 93
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.6,
|
1500 |
+
"learning_rate": 7.228075054658095e-07,
|
1501 |
+
"logits/chosen": -2.914088249206543,
|
1502 |
+
"logits/rejected": -2.949735164642334,
|
1503 |
+
"loss": 0.5151,
|
1504 |
+
"policy_logps/chosen": -156.11376953125,
|
1505 |
+
"policy_logps/rejected": -136.4941864013672,
|
1506 |
+
"referece_logps/chosen": -154.32318115234375,
|
1507 |
+
"referece_logps/rejected": -129.20169067382812,
|
1508 |
+
"rewards/accuracies": 0.875,
|
1509 |
+
"rewards/chosen": -0.17905890941619873,
|
1510 |
+
"rewards/margins": 0.5501898527145386,
|
1511 |
+
"rewards/rejected": -0.7292487621307373,
|
1512 |
+
"step": 94
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.61,
|
1516 |
+
"learning_rate": 7.028789546718325e-07,
|
1517 |
+
"logits/chosen": -2.9285836219787598,
|
1518 |
+
"logits/rejected": -2.9289567470550537,
|
1519 |
+
"loss": 0.46,
|
1520 |
+
"policy_logps/chosen": -138.6322021484375,
|
1521 |
+
"policy_logps/rejected": -140.56346130371094,
|
1522 |
+
"referece_logps/chosen": -137.0457763671875,
|
1523 |
+
"referece_logps/rejected": -134.56263732910156,
|
1524 |
+
"rewards/accuracies": 0.9375,
|
1525 |
+
"rewards/chosen": -0.15864019095897675,
|
1526 |
+
"rewards/margins": 0.44144219160079956,
|
1527 |
+
"rewards/rejected": -0.6000823974609375,
|
1528 |
+
"step": 95
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.61,
|
1532 |
+
"learning_rate": 6.830790105792973e-07,
|
1533 |
+
"logits/chosen": -2.9379961490631104,
|
1534 |
+
"logits/rejected": -2.9724767208099365,
|
1535 |
+
"loss": 0.4291,
|
1536 |
+
"policy_logps/chosen": -101.97422790527344,
|
1537 |
+
"policy_logps/rejected": -120.30264282226562,
|
1538 |
+
"referece_logps/chosen": -102.00912475585938,
|
1539 |
+
"referece_logps/rejected": -112.79841613769531,
|
1540 |
+
"rewards/accuracies": 0.9375,
|
1541 |
+
"rewards/chosen": 0.0034902598708868027,
|
1542 |
+
"rewards/margins": 0.7539129257202148,
|
1543 |
+
"rewards/rejected": -0.7504226565361023,
|
1544 |
+
"step": 96
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.62,
|
1548 |
+
"learning_rate": 6.634162434511938e-07,
|
1549 |
+
"logits/chosen": -2.9047234058380127,
|
1550 |
+
"logits/rejected": -2.9031195640563965,
|
1551 |
+
"loss": 0.4965,
|
1552 |
+
"policy_logps/chosen": -143.34796142578125,
|
1553 |
+
"policy_logps/rejected": -137.45285034179688,
|
1554 |
+
"referece_logps/chosen": -140.2106170654297,
|
1555 |
+
"referece_logps/rejected": -128.766845703125,
|
1556 |
+
"rewards/accuracies": 0.875,
|
1557 |
+
"rewards/chosen": -0.3137343227863312,
|
1558 |
+
"rewards/margins": 0.5548651814460754,
|
1559 |
+
"rewards/rejected": -0.868599534034729,
|
1560 |
+
"step": 97
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 0.63,
|
1564 |
+
"learning_rate": 6.43899164174453e-07,
|
1565 |
+
"logits/chosen": -2.9683728218078613,
|
1566 |
+
"logits/rejected": -2.9473183155059814,
|
1567 |
+
"loss": 0.4951,
|
1568 |
+
"policy_logps/chosen": -99.94713592529297,
|
1569 |
+
"policy_logps/rejected": -99.26773834228516,
|
1570 |
+
"referece_logps/chosen": -100.4857406616211,
|
1571 |
+
"referece_logps/rejected": -93.8021011352539,
|
1572 |
+
"rewards/accuracies": 0.9375,
|
1573 |
+
"rewards/chosen": 0.05386023223400116,
|
1574 |
+
"rewards/margins": 0.6004235148429871,
|
1575 |
+
"rewards/rejected": -0.5465632677078247,
|
1576 |
+
"step": 98
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 0.63,
|
1580 |
+
"learning_rate": 6.245362205760703e-07,
|
1581 |
+
"logits/chosen": -2.912815570831299,
|
1582 |
+
"logits/rejected": -2.941206216812134,
|
1583 |
+
"loss": 0.4346,
|
1584 |
+
"policy_logps/chosen": -149.0521240234375,
|
1585 |
+
"policy_logps/rejected": -140.37326049804688,
|
1586 |
+
"referece_logps/chosen": -146.72096252441406,
|
1587 |
+
"referece_logps/rejected": -131.8609161376953,
|
1588 |
+
"rewards/accuracies": 0.875,
|
1589 |
+
"rewards/chosen": -0.23311704397201538,
|
1590 |
+
"rewards/margins": 0.6181185245513916,
|
1591 |
+
"rewards/rejected": -0.8512355089187622,
|
1592 |
+
"step": 99
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.64,
|
1596 |
+
"learning_rate": 6.053357937665236e-07,
|
1597 |
+
"logits/chosen": -2.9297289848327637,
|
1598 |
+
"logits/rejected": -2.9020700454711914,
|
1599 |
+
"loss": 0.4962,
|
1600 |
+
"policy_logps/chosen": -130.0217742919922,
|
1601 |
+
"policy_logps/rejected": -139.19395446777344,
|
1602 |
+
"referece_logps/chosen": -128.82655334472656,
|
1603 |
+
"referece_logps/rejected": -132.361572265625,
|
1604 |
+
"rewards/accuracies": 0.9375,
|
1605 |
+
"rewards/chosen": -0.11952205747365952,
|
1606 |
+
"rewards/margins": 0.563715934753418,
|
1607 |
+
"rewards/rejected": -0.6832380294799805,
|
1608 |
+
"step": 100
|
1609 |
+
}
|
1610 |
+
],
|
1611 |
+
"max_steps": 156,
|
1612 |
+
"num_train_epochs": 1,
|
1613 |
+
"total_flos": 0.0,
|
1614 |
+
"trial_name": null,
|
1615 |
+
"trial_params": null
|
1616 |
+
}
|
checkpoint-100-llava/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43dc92799f8180dc0c0da8cb61b9160653e4cc8d8bfe02a1bbedc47f967e36ba
|
3 |
+
size 5755
|
checkpoint-100-llava/zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage == 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage == 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|