End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
metrics:
|
| 5 |
+
- accuracy
|
| 6 |
+
model-index:
|
| 7 |
+
- name: my_awesome_food_model_v2
|
| 8 |
+
results: []
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sciarrilli/huggingface/runs/trgtu68a)
|
| 15 |
+
# my_awesome_food_model_v2
|
| 16 |
+
|
| 17 |
+
This model was trained from scratch on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.8053
|
| 20 |
+
- Accuracy: 0.8083
|
| 21 |
+
|
| 22 |
+
## Model description
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Intended uses & limitations
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training and evaluation data
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training procedure
|
| 35 |
+
|
| 36 |
+
### Training hyperparameters
|
| 37 |
+
|
| 38 |
+
The following hyperparameters were used during training:
|
| 39 |
+
- learning_rate: 5e-05
|
| 40 |
+
- train_batch_size: 128
|
| 41 |
+
- eval_batch_size: 128
|
| 42 |
+
- seed: 42
|
| 43 |
+
- gradient_accumulation_steps: 4
|
| 44 |
+
- total_train_batch_size: 512
|
| 45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 46 |
+
- lr_scheduler_type: linear
|
| 47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 48 |
+
- num_epochs: 30
|
| 49 |
+
|
| 50 |
+
### Training results
|
| 51 |
+
|
| 52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 53 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
| 54 |
+
| 4.4448 | 0.9932 | 110 | 4.4236 | 0.0914 |
|
| 55 |
+
| 3.8312 | 1.9955 | 221 | 3.8007 | 0.4096 |
|
| 56 |
+
| 3.1568 | 2.9977 | 332 | 3.1221 | 0.5435 |
|
| 57 |
+
| 2.4967 | 4.0 | 443 | 2.4920 | 0.6308 |
|
| 58 |
+
| 2.0432 | 4.9932 | 553 | 2.0252 | 0.6825 |
|
| 59 |
+
| 1.6512 | 5.9955 | 664 | 1.6771 | 0.7184 |
|
| 60 |
+
| 1.388 | 6.9977 | 775 | 1.4464 | 0.7367 |
|
| 61 |
+
| 1.1677 | 8.0 | 886 | 1.2782 | 0.7533 |
|
| 62 |
+
| 1.0307 | 8.9932 | 996 | 1.1741 | 0.7625 |
|
| 63 |
+
| 0.9156 | 9.9955 | 1107 | 1.0900 | 0.7741 |
|
| 64 |
+
| 0.8283 | 10.9977 | 1218 | 1.0295 | 0.7771 |
|
| 65 |
+
| 0.8078 | 12.0 | 1329 | 0.9949 | 0.7776 |
|
| 66 |
+
| 0.7643 | 12.9932 | 1439 | 0.9656 | 0.7817 |
|
| 67 |
+
| 0.6578 | 13.9955 | 1550 | 0.9274 | 0.7868 |
|
| 68 |
+
| 0.611 | 14.9977 | 1661 | 0.9051 | 0.7921 |
|
| 69 |
+
| 0.6016 | 16.0 | 1772 | 0.9009 | 0.7912 |
|
| 70 |
+
| 0.5652 | 16.9932 | 1882 | 0.8772 | 0.7963 |
|
| 71 |
+
| 0.5492 | 17.9955 | 1993 | 0.8559 | 0.7992 |
|
| 72 |
+
| 0.5054 | 18.9977 | 2104 | 0.8734 | 0.7956 |
|
| 73 |
+
| 0.5351 | 20.0 | 2215 | 0.8617 | 0.7999 |
|
| 74 |
+
| 0.4949 | 20.9932 | 2325 | 0.8487 | 0.8013 |
|
| 75 |
+
| 0.4701 | 21.9955 | 2436 | 0.8437 | 0.8013 |
|
| 76 |
+
| 0.4576 | 22.9977 | 2547 | 0.8430 | 0.8008 |
|
| 77 |
+
| 0.4573 | 24.0 | 2658 | 0.8195 | 0.8071 |
|
| 78 |
+
| 0.4399 | 24.9932 | 2768 | 0.8206 | 0.8071 |
|
| 79 |
+
| 0.424 | 25.9955 | 2879 | 0.8212 | 0.8068 |
|
| 80 |
+
| 0.4031 | 26.9977 | 2990 | 0.8202 | 0.8069 |
|
| 81 |
+
| 0.4031 | 28.0 | 3101 | 0.8173 | 0.8080 |
|
| 82 |
+
| 0.407 | 28.9932 | 3211 | 0.8051 | 0.8069 |
|
| 83 |
+
| 0.4194 | 29.7968 | 3300 | 0.8053 | 0.8083 |
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
### Framework versions
|
| 87 |
+
|
| 88 |
+
- Transformers 4.42.3
|
| 89 |
+
- Pytorch 2.3.1+cu121
|
| 90 |
+
- Datasets 2.20.0
|
| 91 |
+
- Tokenizers 0.19.1
|