Antonin Raffin
commited on
Commit
·
b462163
1
Parent(s):
248a272
Initial commit
Browse files- .gitattributes +2 -0
- README.md +66 -0
- args.yml +59 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +103 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 149.15 +/- 162.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env BipedalWalker-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env BipedalWalker-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env BipedalWalker-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env BipedalWalker-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('clip_range', 0.2),
|
55 |
+
('ent_coef', 0.001),
|
56 |
+
('gae_lambda', 0.95),
|
57 |
+
('gamma', 0.99),
|
58 |
+
('learning_rate', 0.00025),
|
59 |
+
('n_envs', 16),
|
60 |
+
('n_epochs', 10),
|
61 |
+
('n_steps', 2048),
|
62 |
+
('n_timesteps', 5000000.0),
|
63 |
+
('normalize', True),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- BipedalWalker-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 2229112069
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - clip_range
|
5 |
+
- 0.2
|
6 |
+
- - ent_coef
|
7 |
+
- 0.001
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.00025
|
14 |
+
- - n_envs
|
15 |
+
- 16
|
16 |
+
- - n_epochs
|
17 |
+
- 10
|
18 |
+
- - n_steps
|
19 |
+
- 2048
|
20 |
+
- - n_timesteps
|
21 |
+
- 5000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:112e474c550acc9c072def4f8652a43993ba17fc957c8286f8e1201ca8529ff7
|
3 |
+
size 176956
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd716bd9950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd716bd99e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd716bd9a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd716bd9b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd716bd9b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd716bd9c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd716bd9cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd716bd9d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd716bd9dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd716bd9e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd716bd9ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd716c2a840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxiFlGgKiUNgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsYhZRoColDYAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLGIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxiFlGgoiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxiFlHViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
24
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVKwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgKiUMQAACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLBIWUaAqJQxAAAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsEhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwSFlGgoiUMEAQEBAZR0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGg4jAVzdGF0ZZR9lCiMA2tleZRoEGgSSwCFlGgUh5RSlChLAU1wAoWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZRLBIWUdWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True True]",
|
43 |
+
"bounded_above": "[ True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
4
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 16,
|
50 |
+
"num_timesteps": 5013504,
|
51 |
+
"_total_timesteps": 5000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1614710447.1098251,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzBiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzBiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": null,
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVjQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABgAAoQ00O3D1irdN5qg6MhKDvBpCvD3k4966/TtcP8VJLjsAAIA/aWoEPfDf3rpSlVo/RaGdOgAAgD9gsuE+iULkPps/7D5Tpvo+9roIP+M6Gj/IijU/bsxiPwAAgD8AAIA/zgE0Oy7OuDa5Qzy6gRKDvHAWvT3mhdo6tiZcPyt5ojgAAIA/r+IFPYSD2jqZhlo/Ca+UugAAgD9RsuE+ekLkPow/7D5Cpvo+7boIP9k6Gj+8ijU/XsxiPwAAgD8AAIA/TfozO0yGBzdkDoq6iRKDvGBBvT1fPiA74SBcP2PfDboAAIA/jSEGPSU9IDvkg1o/bxDaugAAgD9RsuE+ekLkPow/7D5Cpvo+7boIP9k6Gj+8ijU/XsxiPwAAgD8AAIA/ygs0O8y42LebtQM7EhKDvJD/uz3Izy27uEBcP+VaXDsAAIA/reQDPbrMLbssmlo/qdf1OgAAgD9jsuE+jELkPp8/7D5Wpvo++LoIP+U6Gj/LijU/ccxiPwAAgD8AAIA/1As0O3NR2rfhrQQ7ERKDvFD+uz1tFy+7w0BcPx9NXTsAAIA/7eADPVAUL7tamlo/Daf3OgAAgD9msuE+j0LkPqI/7D5Zpvo++roIP+c6Gj/NijU/dMxiPwAAgD8AAIA/1Qk0O9v4GzYa5Z65dhKDvFrgvD0Ibzg6GC5cP5g3XToAAIA/TZIFPZ5sODo4ilo/uf36uQAAgD9asuE+g0LkPpU/7D5Mpvo+8roIP986Gj/DijU/aMxiPwAAgD8AAIA/nww0O0E/rre2ytM6JBKDvKwjvD0pvwu7Jz5cP3sxQzsAAIA/ly0EPaq8C7uPl1o/AanFOgAAgD9jsuE+jELkPp8/7D5Wpvo++LoIP+U6Gj/LijU/ccxiPwAAgD8AAIA/vgw0O7dxt7dn+N46HxKDvM4bvD1fHxO7uT5cPyWkSDsAAIA/rR4EPcUcE7sMmFo/wxfQOgAAgD9jsuE+jELkPp8/7D5Wpvo++LoIP+U6Gj/LijU/ccxiPwAAgD8AAIA/ufkzO4D0Czekk466jRKDvNlFvT0OfiU7RiBcP1+SHroAAIA/iykGPRV8JTt7g1o/9DThugAAgD9OsuE+d0LkPok/7D4/pvo+67oIP9c6Gj+6ijU/W8xiPwAAgD8AAIA/tg80O44ojLbsXao5XxKDvHGbvD2W0+C5jzVcP8N24ToAAIA/NRwFPenP4Lnwjlo/6f+eOQAAgD9gsuE+iULkPps/7D5Tpvo+9roIP+M6Gj/IijU/bsxiPwAAgD8AAIA/YO0zOw1OVDfNR9i6nBKDvAyOvT2gCns7bhZcP4hd17oAAIA/A5IGPeQHezsAf1o/2M8quwAAgD9LsuE+dELkPoU/7D47pvo+6boIP9U6Gj+3ijU/WMxiPwAAgD8AAIA/zewzOzbuVjfQ8tq6nRKDvNCQvT0jI347EBZcP+hJ3LoAAIA/MZcGPbkgfjvCflo/wOosuwAAgD9OsuE+d0LkPok/7D4/pvo+67oIP9c6Gj+6ijU/W8xiPwAAgD8AAIA/Aw40O02cf7fpV5s6OBKDvEtLvD1FAM26WDtcP8OuJzsAAIA/V30EPU/8zLqflFo/S/qQOgAAgD9gsuE+iULkPps/7D5Tpvo+9roIP+M6Gj/IijU/bsxiPwAAgD8AAIA/qAw0O2OewLcbH+o6HBKDvEAUvD37ehq7QD9cP+ASTjsAAIA/+w4EPUN4GruRmFo//3/aOgAAgD9jsuE+jELkPp8/7D5Wpvo++LoIP+U6Gj/LijU/ccxiPwAAgD8AAIA/zQw0O6RStLcnLds6IhKDvAEfvD2DnhC7dj5cP03KRjsAAIA/uSMEPfWbELvil1o/U43MOgAAgD9jsuE+jELkPp8/7D5Wpvo++LoIP+U6Gj/LijU/ccxiPwAAgD8AAIA/VukzOy0kbjfQmPK6oRKDvAipvT0hy4w7txJcP/r5A7sAAIA/obkGPbfJjDs6fVo/E5g/uwAAgD9FsuE+bkLkPn8/7D41pvo+5roIP9A6Gj+yijU/UsxiPwAAgD8AAIA/lHSUYi4="
|
70 |
+
},
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ+4h4Xt0ckCUhpRSlIwBbJRNOwOMAXSUR0DFYtAQQL/kdX2UKGgGaAloD0MIiGTIsfVqckCUhpRSlGgVTUsDaBZHQMVi6HKnvUl1fZQoaAZoCWgPQwgrTUpBN35yQJSGlFKUaBVNNwNoFkdAxWMYJk5IYnV9lChoBmgJaA9DCONPVDZsgnJAlIaUUpRoFU05A2gWR0DFY3+1lXijdX2UKGgGaAloD0MIu0VgrG+DckCUhpRSlGgVTTwDaBZHQMVjbZpztC11fZQoaAZoCWgPQwj4VE57SndyQJSGlFKUaBVNOgNoFkdAxWd+z544ZXV9lChoBmgJaA9DCPBMaJJYyE1AlIaUUpRoFU3uAWgWR0DFaCtAZ88cdX2UKGgGaAloD0MI8Q7wpEVockCUhpRSlGgVTUcDaBZHQMVoMda+vhZ1fZQoaAZoCWgPQwhAw5s1eC8kwJSGlFKUaBVNJgFoFkdAxWhazJIUanV9lChoBmgJaA9DCCNJEK6AGFpAlIaUUpRoFU1tAmgWR0DFaGDeuV5bdX2UKGgGaAloD0MIfcwHBHqBckCUhpRSlGgVTSkDaBZHQMVojOVopQV1fZQoaAZoCWgPQwhZTGw+7j5yQJSGlFKUaBVNZQNoFkdAxWijHqeK9HV9lChoBmgJaA9DCNds5SW/XXJAlIaUUpRoFU1BA2gWR0DFaK9o371qdX2UKGgGaAloD0MI8z0jERpsckCUhpRSlGgVTS4DaBZHQMVo3rUkOZt1fZQoaAZoCWgPQwi2uTE9oXJyQJSGlFKUaBVNQANoFkdAxWk2D0163XV9lChoBmgJaA9DCLStZp3xjHJAlIaUUpRoFU0fA2gWR0DFaTrjNpuddX2UKGgGaAloD0MI6j2V096SckCUhpRSlGgVTTgDaBZHQMV0BdDpkf91fZQoaAZoCWgPQwicTUcA96JyQJSGlFKUaBVNHQNoFkdAxXQ1sMy8BnV9lChoBmgJaA9DCCsYldQJcHJAlIaUUpRoFU0/A2gWR0DFeKZg7YChdX2UKGgGaAloD0MIdSFWf0RVckCUhpRSlGgVTWEDaBZHQMV4+brs0Hh1fZQoaAZoCWgPQwi4BOCfEoVyQJSGlFKUaBVNOwNoFkdAxXk76uW8iHV9lChoBmgJaA9DCHmvWpnwj3JAlIaUUpRoFU0lA2gWR0DFeWKeZof0dX2UKGgGaAloD0MIUFQ2rCmkckCUhpRSlGgVTRMDaBZHQMV5/L2HtWx1fZQoaAZoCWgPQwioVl9dlYpyQJSGlFKUaBVNKANoFkdAxXoZK6nR9nV9lChoBmgJaA9DCM3qHW7HkHJAlIaUUpRoFU0pA2gWR0DFeki/RE4OdX2UKGgGaAloD0MI/fohNphrckCUhpRSlGgVTUADaBZHQMV6Wy5AhSt1fZQoaAZoCWgPQwjaccPvZo9yQJSGlFKUaBVNKgNoFkdAxXqMaYu01XV9lChoBmgJaA9DCFWjVwOUcXJAlIaUUpRoFU1CA2gWR0DFeo+w/xDtdX2UKGgGaAloD0MIL6LtmLqFckCUhpRSlGgVTTQDaBZHQMV6o2g39751fZQoaAZoCWgPQwg2lUVhV3JyQJSGlFKUaBVNTQNoFkdAxXrrm/336HV9lChoBmgJaA9DCETcnEoGgnJAlIaUUpRoFU0qA2gWR0DFeyMlVtGedX2UKGgGaAloD0MIICkiwyqSckCUhpRSlGgVTTIDaBZHQMV7J8cU/Od1fZQoaAZoCWgPQwhiMepaezVWQJSGlFKUaBVNHQJoFkdAxX74YzBRAXV9lChoBmgJaA9DCCIa3UEsd3JAlIaUUpRoFU08A2gWR0DFf1+s3hn8dX2UKGgGaAloD0MIX0NwXMaKckCUhpRSlGgVTS0DaBZHQMV/gA2hqTN1fZQoaAZoCWgPQwhOnUfFfxpyQJSGlFKUaBVNfwNoFkdAxYANr1uivnV9lChoBmgJaA9DCFEU6BO5b3JAlIaUUpRoFU0/A2gWR0DFgGCEQGwBdX2UKGgGaAloD0MIaAbxgR1TckCUhpRSlGgVTTIDaBZHQMWAekl3Qld1fZQoaAZoCWgPQwhrLGFtDGlyQJSGlFKUaBVNOgNoFkdAxYEcBfa6BnV9lChoBmgJaA9DCG7dzVMdjXJAlIaUUpRoFU0sA2gWR0DFgSpKFqSHdX2UKGgGaAloD0MIgCiYMQV6ckCUhpRSlGgVTTYDaBZHQMWBZAxrSE11fZQoaAZoCWgPQwhnnfF9MYByQJSGlFKUaBVNOgNoFkdAxYXvgPVd5nV9lChoBmgJaA9DCE9cjldgSHJAlIaUUpRoFU1eA2gWR0DFheQdyT6jdX2UKGgGaAloD0MI+7K0UzNtckCUhpRSlGgVTTcDaBZHQMWF8GSZBs11fZQoaAZoCWgPQwjhtrbwfHlyQJSGlFKUaBVNLgNoFkdAxYX66QvHtHV9lChoBmgJaA9DCIbLKmxGknJAlIaUUpRoFU0eA2gWR0DFhjLDsMRZdX2UKGgGaAloD0MILA/SU+SbckCUhpRSlGgVTR4DaBZHQMWGbguh9LJ1fZQoaAZoCWgPQwiL4lXWNolyQJSGlFKUaBVNNQNoFkdAxYaB2r4nGHV9lChoBmgJaA9DCAZM4NZdkXJAlIaUUpRoFU0eA2gWR0DFhm0WXTmXdX2UKGgGaAloD0MIlUT2QRaXckCUhpRSlGgVTRgDaBZHQMWGzuMERrd1fZQoaAZoCWgPQwgaM4l6gW1yQJSGlFKUaBVNNgNoFkdAxYcNqHGjsXV9lChoBmgJaA9DCCvbh7zlWXJAlIaUUpRoFU1IA2gWR0DFh64lMRHxdX2UKGgGaAloD0MI9tIUAQ6nckCUhpRSlGgVTSMDaBZHQMWH24WcjJN1fZQoaAZoCWgPQwilZg+0QntyQJSGlFKUaBVNOQNoFkdAxYgMQzUI9nV9lChoBmgJaA9DCP1nzY+/JFFAlIaUUpRoFU0BAmgWR0DFl39LxqfwdX2UKGgGaAloD0MIb7n6scmHckCUhpRSlGgVTSsDaBZHQMWXlMfRu0l1fZQoaAZoCWgPQwi95erHZm5yQJSGlFKUaBVNOgNoFkdAxZe0AYpDu3V9lChoBmgJaA9DCA2qDU5ESnJAlIaUUpRoFU1aA2gWR0DFmBLG7z06dX2UKGgGaAloD0MIc0pATEKfckCUhpRSlGgVTSUDaBZHQMWYJEVWS2Z1fZQoaAZoCWgPQwhl5CzsaXVyQJSGlFKUaBVNNwNoFkdAxZg37b+LnHV9lChoBmgJaA9DCNUmTu73h3JAlIaUUpRoFU0qA2gWR0DFmDUscyWSdX2UKGgGaAloD0MIGXWtvQ9YckCUhpRSlGgVTU4DaBZHQMWYRiqQzUJ1fZQoaAZoCWgPQwhFSx5Pi4ZyQJSGlFKUaBVNMQNoFkdAxZh4YaYNRXV9lChoBmgJaA9DCBBB1egVnXJAlIaUUpRoFU0ZA2gWR0DFmJzufEn9dX2UKGgGaAloD0MIYJM16uGOckCUhpRSlGgVTTQDaBZHQMWYvY0uUUx1fZQoaAZoCWgPQwjshJfg1IBaQJSGlFKUaBVNQQJoFkdAxZkPipeeF3V9lChoBmgJaA9DCGsNpfaiRHJAlIaUUpRoFU1bA2gWR0DFmVNaY/mldX2UKGgGaAloD0MIiXssfWhZckCUhpRSlGgVTUsDaBZHQMWZi07CBPN1fZQoaAZoCWgPQwiNDkjCfl1yQJSGlFKUaBVNTwNoFkdAxZ5T2q1gIHV9lChoBmgJaA9DCOLNGryvdXJAlIaUUpRoFU00A2gWR0DFnm68xsVMdX2UKGgGaAloD0MImQ6dnvd2Y0CUhpRSlGgVTfACaBZHQMWexhBiTdN1fZQoaAZoCWgPQwjQKjOldSxyQJSGlFKUaBVNeQNoFkdAxZ9In0kGA3V9lChoBmgJaA9DCBH92vopTXJAlIaUUpRoFU1KA2gWR0DFn0lcv/R3dX2UKGgGaAloD0MI7E53nviDckCUhpRSlGgVTRwDaBZHQMWfdurhisp1fZQoaAZoCWgPQwhNZyeDY4tyQJSGlFKUaBVNIgNoFkdAxZ+hwMH8j3V9lChoBmgJaA9DCNOf/UjRenJAlIaUUpRoFU0qA2gWR0DFn5geeWfLdX2UKGgGaAloD0MIOs5twv2WckCUhpRSlGgVTTEDaBZHQMWfsBjOLR91fZQoaAZoCWgPQwita7QcaKByQJSGlFKUaBVNFANoFkdAxZ/TuLrHEXV9lChoBmgJaA9DCJJAg00d43FAlIaUUpRoFU1RA2gWR0DFn+Ryhi9adX2UKGgGaAloD0MIbF9AL5xOckCUhpRSlGgVTVYDaBZHQMWgQLCFbml1fZQoaAZoCWgPQwjY8sr1do5yQJSGlFKUaBVNKQNoFkdAxaAuY+jdpXV9lChoBmgJaA9DCNMx5xl7d3JAlIaUUpRoFU1CA2gWR0DFpGG0Xxe+dX2UKGgGaAloD0MIHLXC9D2hckCUhpRSlGgVTRQDaBZHQMWkohhpg1F1fZQoaAZoCWgPQwhHq1rSETJyQJSGlFKUaBVNfQNoFkdAxaTfF+d9UnV9lChoBmgJaA9DCOhoVUs6aiPAlIaUUpRoFU05AWgWR0DFpO4Gjbi7dX2UKGgGaAloD0MIlX8tr1xdQUCUhpRSlGgVTZsBaBZHQMWlHBd2Pkt1fZQoaAZoCWgPQwgJbM7BMyNlQJSGlFKUaBVNAwNoFkdAxaVqaXKKYXV9lChoBmgJaA9DCGNgHccPET5AlIaUUpRoFU0QAmgWR0DFpX1dxAB1dX2UKGgGaAloD0MI81Zdh6qackCUhpRSlGgVTR0DaBZHQMWloDgIhQp1fZQoaAZoCWgPQwhYN94d2ZVyQJSGlFKUaBVNGgNoFkdAxaXzLdvbXnV9lChoBmgJaA9DCMAma9QDhnJAlIaUUpRoFU0zA2gWR0DFpo/OryUcdX2UKGgGaAloD0MIZktWRXiYckCUhpRSlGgVTSIDaBZHQMWmfgR02cd1fZQoaAZoCWgPQwjKbfse9StNQJSGlFKUaBVNIAJoFkdAxaatwWnCO3V9lChoBmgJaA9DCO+tSExQYxjAlIaUUpRoFU1IAWgWR0DFptIOYplSdX2UKGgGaAloD0MIEMtmDgmgckCUhpRSlGgVTQoDaBZHQMWmx0d7v5R1fZQoaAZoCWgPQwhIqBlSRXVyQJSGlFKUaBVNNgNoFkdAxabpBDXvpnV9lChoBmgJaA9DCFXBqKTObXJAlIaUUpRoFU03A2gWR0DFqyzuOS4fdX2UKGgGaAloD0MIw4Nm1z2PckCUhpRSlGgVTSYDaBZHQMWrdcwQDmt1fZQoaAZoCWgPQwgepRKe0IxyQJSGlFKUaBVNLwNoFkdAxatr60pmVnV9lChoBmgJaA9DCHEFFOrpBmFAlIaUUpRoFU3GAmgWR0DFq6OVAzHkdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 1530,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.99,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.001,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null,
|
99 |
+
"_last_dones": {
|
100 |
+
":type:": "<class 'numpy.ndarray'>",
|
101 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
102 |
+
}
|
103 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e31e80379cc6dd8f604ba6227b3c22ca90efcff8a29474b6c453861f798c7fe9
|
3 |
+
size 101783
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddeb45f67b5672ef5977fd26d3620c259482f5e2b94fd06716eacecca1cffe08
|
3 |
+
size 51710
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fceab4205294d39eac76ba9ad00897505f87598a63d5d78680e43bb0d017377
|
3 |
+
size 450631
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 149.1450564, "std_reward": 162.00872673242017, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T14:26:00.960674"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed14a798f3e8d2d8b03e7ee6ebac82272cf124c38bf0939732e73ea7603da6e0
|
3 |
+
size 229035
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818cb2ae0db16c862d0f1a414ee304004e48331bc45b80dfe7d852ace20527f7
|
3 |
+
size 6496
|