Add paper abstract and link to model card
Browse filesThis PR adds the abstract from the linked paper to the model card and updates the paper link to the Hugging Face paper link. This provides more context and makes the relevant information easily accessible.
README.md
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
-
language:
|
4 |
-
- en
|
5 |
base_model:
|
6 |
- distilbert/distilbert-base-uncased
|
7 |
datasets:
|
@@ -18,7 +15,10 @@ datasets:
|
|
18 |
- allenai/qasc
|
19 |
- nguyen-brat/worldtree
|
20 |
- qiaojin/PubMedQA
|
|
|
|
|
21 |
library_name: transformers
|
|
|
22 |
tags:
|
23 |
- text-classification
|
24 |
- sketch-of-thought
|
@@ -44,6 +44,7 @@ Unlike conventional Chain of Thought (CoT) approaches that produce verbose reaso
|
|
44 |
|
45 |
- **Expert Lexicons**: Leverages domain-specific shorthand, technical symbols, and jargon for precise and efficient communication. Suited for technical disciplines requiring maximum information density.
|
46 |
|
|
|
47 |
## Loading the Model
|
48 |
|
49 |
This repository contains the DistilBERT paradigm selection model for the Sketch-of-Thought (SoT) framework. You can load and use it directly with Hugging Face Transformers:
|
@@ -193,6 +194,8 @@ The SoT package supports multiple output formats:
|
|
193 |
- `"vlm"`: Multimodal format for vision-language models
|
194 |
- `"raw"`: Raw exemplars without formatting
|
195 |
|
|
|
|
|
196 |
<details>
|
197 |
<summary>What's the difference?</summary>
|
198 |
|
@@ -268,6 +271,31 @@ The SoT package supports multiple output formats:
|
|
268 |
|
269 |
SoT supports multiple languages. System prompts and exemplars are automatically loaded in the requested language.
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
## Limitations
|
272 |
|
273 |
- The model is trained to classify questions into one of three predefined paradigms and may not generalize to tasks outside the training distribution.
|
@@ -285,7 +313,7 @@ If you find our work helpful, please cite:
|
|
285 |
eprint={2503.05179},
|
286 |
archivePrefix={arXiv},
|
287 |
primaryClass={cs.CL},
|
288 |
-
url={https://
|
289 |
}
|
290 |
```
|
291 |
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- distilbert/distilbert-base-uncased
|
4 |
datasets:
|
|
|
15 |
- allenai/qasc
|
16 |
- nguyen-brat/worldtree
|
17 |
- qiaojin/PubMedQA
|
18 |
+
language:
|
19 |
+
- en
|
20 |
library_name: transformers
|
21 |
+
license: mit
|
22 |
tags:
|
23 |
- text-classification
|
24 |
- sketch-of-thought
|
|
|
44 |
|
45 |
- **Expert Lexicons**: Leverages domain-specific shorthand, technical symbols, and jargon for precise and efficient communication. Suited for technical disciplines requiring maximum information density.
|
46 |
|
47 |
+
|
48 |
## Loading the Model
|
49 |
|
50 |
This repository contains the DistilBERT paradigm selection model for the Sketch-of-Thought (SoT) framework. You can load and use it directly with Hugging Face Transformers:
|
|
|
194 |
- `"vlm"`: Multimodal format for vision-language models
|
195 |
- `"raw"`: Raw exemplars without formatting
|
196 |
|
197 |
+
|
198 |
+
|
199 |
<details>
|
200 |
<summary>What's the difference?</summary>
|
201 |
|
|
|
271 |
|
272 |
SoT supports multiple languages. System prompts and exemplars are automatically loaded in the requested language.
|
273 |
|
274 |
+
## Paradigm Selection Model
|
275 |
+
|
276 |
+
SoT includes a pretrained DistilBERT model for automatic paradigm selection based on the question. The model is available on Hugging Face: [saytes/SoT_DistilBERT](https://huggingface.co/saytes/SoT_DistilBERT)
|
277 |
+
|
278 |
+
## Datasets
|
279 |
+
|
280 |
+
The SoT_DistilBERT model was evaluated on the following datasets:
|
281 |
+
|
282 |
+
| Dataset | HF ID | Subset | Split | Evaluation Type |
|
283 |
+
|---------|-------|--------|-------|----------------|
|
284 |
+
| GSM8K | [gsm8k](https://huggingface.co/datasets/gsm8k) | main | test | numerical |
|
285 |
+
| SVAMP | [ChilleD/SVAMP](https://huggingface.co/datasets/ChilleD/SVAMP) | - | test | numerical |
|
286 |
+
| AQUA-RAT | [aqua_rat](https://huggingface.co/datasets/aqua_rat) | - | test | multiple_choice |
|
287 |
+
| DROP | [drop](https://huggingface.co/datasets/drop) | - | validation | open |
|
288 |
+
| OpenbookQA | [openbookqa](https://huggingface.co/datasets/openbookqa) | - | test | multiple_choice |
|
289 |
+
| StrategyQA | [ChilleD/StrategyQA](https://huggingface.co/datasets/ChilleD/StrategyQA) | - | test | yesno |
|
290 |
+
| LogiQA | [lucasmccabe/logiqa](https://huggingface.co/datasets/lucasmccabe/logiqa) | default | test | multiple_choice |
|
291 |
+
| Reclor | [metaeval/reclor](https://huggingface.co/datasets/metaeval/reclor) | - | validation | multiple_choice |
|
292 |
+
| HotPotQA | [hotpot_qa](https://huggingface.co/datasets/hotpot_qa) | distractor | validation | open |
|
293 |
+
| MuSiQue-Ans | [dgslibisey/MuSiQue](https://huggingface.co/datasets/dgslibisey/MuSiQue) | - | validation | open |
|
294 |
+
| QASC | [allenai/qasc](https://huggingface.co/datasets/allenai/qasc) | - | validation | multiple_choice |
|
295 |
+
| Worldtree | [nguyen-brat/worldtree](https://huggingface.co/datasets/nguyen-brat/worldtree) | - | train | multiple_choice |
|
296 |
+
| PubMedQA | [qiaojin/PubMedQA](https://huggingface.co/datasets/qiaojin/PubMedQA) | pqa_labeled | train | yesno |
|
297 |
+
| MedQA | [bigbio/med_qa](https://huggingface.co/datasets/bigbio/med_qa) | med_qa_en_source | validation | multiple_choice |
|
298 |
+
|
299 |
## Limitations
|
300 |
|
301 |
- The model is trained to classify questions into one of three predefined paradigms and may not generalize to tasks outside the training distribution.
|
|
|
313 |
eprint={2503.05179},
|
314 |
archivePrefix={arXiv},
|
315 |
primaryClass={cs.CL},
|
316 |
+
url={https://hf.co/papers/2503.05179},
|
317 |
}
|
318 |
```
|
319 |
|