File size: 10,368 Bytes
9f7d332 4cdc9c1 c95f17f 4cdc9c1 c95f17f 4cdc9c1 fe6495f 7198bfa fe6495f c95f17f fe6495f 99203ad fe6495f c95f17f fe6495f c95f17f fe6495f cf663d4 c95f17f fe6495f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
---
base_model:
- distilbert/distilbert-base-uncased
datasets:
- openai/gsm8k
- ChilleD/SVAMP
- deepmind/aqua_rat
- ucinlp/drop
- allenai/openbookqa
- ChilleD/StrategyQA
- lucasmccabe/logiqa
- metaeval/reclor
- hotpotqa/hotpot_qa
- dgslibisey/MuSiQue
- allenai/qasc
- nguyen-brat/worldtree
- qiaojin/PubMedQA
language:
- en
library_name: transformers
license: mit
tags:
- text-classification
- sketch-of-thought
- efficient-inference
---
# SoT_DistilBERT: Paradigm Selection Model for Sketch-of-Thought
[](LICENSE)
[](https://www.python.org/downloads/)
[](https://pytorch.org/)
[](https://github.com/SimonAytes/SoT)
## What is Sketch-of-Thought?
Sketch-of-Thought (SoT) is a novel prompting framework for efficient reasoning in language models that combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize output token usage while preserving reasoning accuracy.
Unlike conventional Chain of Thought (CoT) approaches that produce verbose reasoning chains, SoT implements three distinct reasoning paradigms:
- **Conceptual Chaining**: Connects essential ideas in logical sequences through structured step links. Effective for commonsense reasoning, multi-hop inference, and fact-based recall tasks.
- **Chunked Symbolism**: Organizes numerical and symbolic reasoning into structured steps with equations, variables, and arithmetic operations. Excels in mathematical problems and technical calculations.
- **Expert Lexicons**: Leverages domain-specific shorthand, technical symbols, and jargon for precise and efficient communication. Suited for technical disciplines requiring maximum information density.
## Loading the Model
This repository contains the DistilBERT paradigm selection model for the Sketch-of-Thought (SoT) framework. You can load and use it directly with Hugging Face Transformers:
```python
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
import json
# Load the model directly from Hugging Face
model = DistilBertForSequenceClassification.from_pretrained("saytes/SoT_DistilBERT")
tokenizer = DistilBertTokenizer.from_pretrained("saytes/SoT_DistilBERT")
# Define label mapping
label_mapping = {
"chunked_symbolism": 0,
"conceptual_chaining": 1,
"expert_lexicons": 2
}
# Function to classify questions
def classify_question(question):
inputs = tokenizer(question, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
# Reverse mapping to get the paradigm name
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
return label_mapping_reverse[predicted_class]
# Example usage
question = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
paradigm = classify_question(question)
print(f"Recommended paradigm: {paradigm}") # Output: "chunked_symbolism"
```
For easier integration, we also provide a complete Python package implementation. See the [GitHub repository](https://github.com/SimonAytes/SoT) or the "Complete Package" section below for details.
## Model Description
The SoT_DistilBERT model is a fine-tuned DistilBERT classifier trained to select the optimal reasoning paradigm for a given query based on the Sketch-of-Thought framework.
### Training Data
The model was trained on approximately 14,200 samples across various reasoning tasks, with each sample labeled using one of the three SoT paradigms. Labels were assigned using GPT-4o with a classification-specific prompt based on predefined heuristics.
### Model Architecture
- **Base model**: DistilBERT
- **Training**: 5 epochs, batch size 64, learning rate 2e-5
- **Loss**: Cross-entropy
## Complete Package
For a more streamlined experience, we've developed the SoT Python package that handles paradigm selection, prompt management, and exemplar formatting:
```python
from sketch_of_thought import SoT
# Initialize SoT
sot = SoT()
# Classify a question and get appropriate paradigm
question = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
paradigm = sot.classify_question(question) # Returns: 'chunked_symbolism'
# Get initialized context with exemplars for the selected paradigm
context = sot.get_initialized_context(
paradigm=paradigm,
question=question,
format="llm",
include_system_prompt=True
)
# Use with your LLM of choice
```
## Example with Qwen2.5-7B
Here's a complete example using Qwen2.5-7B-Instruct:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from sketch_of_thought import SoT
# Initialize SoT
sot = SoT()
# Load Qwen model
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Prepare the question
prompt = "Alice has 5 apples. She gives 3 apples to Bob. How many apples does Alice have?"
# Classify and get appropriate context
paradigm = sot.classify_question(prompt)
messages = sot.get_initialized_context(
paradigm,
prompt,
format="llm",
include_system_prompt=True
)
# Format for the model
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# Decode response
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
**Output:**
```
<think>
A = 5
A -= 3
A = 2
</think>
\boxed{2}
```
## Supported Formats
The SoT package supports multiple output formats:
- `"llm"`: Standard chat format for text-only LLMs
- `"vlm"`: Multimodal format for vision-language models
- `"raw"`: Raw exemplars without formatting
<details>
<summary>What's the difference?</summary>
### LLM Format
Standard `messages` format for Large Language Models.
```python
[
{
"role": "system",
"content": "SYSTEM_PROMPT_HERE"
},
{
"role": "user",
"content": "EXAMPLE_QUESTION_HERE"
},
{
"role": "assistant",
"content": "EXAMPLE_ANSWER_HERE"
},
{
"role": "user",
"content": "USER_QUESTION_HERE"
}
]
```
### VLM Format
Standard `messages` format for Large Vision-Language Models.
```python
[
{
"role": "system",
"content": "SYSTEM_PROMPT_HERE"
},
{
"role": "user",
"content": [{"type": "text", "text": "EXAMPLE_QUESTION_HERE"}]
},
{
"role": "assistant",
"content": [{"type": "text", "text": "EXAMPLE_ANSWER_HERE"}]
},
{
"role": "user",
"content": [{"type": "text", "text": "USER_QUESTION_HERE"}]
}
]
```
### Raw Format
Raw exemplar data. Apply your own format!
```python
[
{
"question": "EXAMPLE_QUESTION_HERE",
"answer": "EXAMPLE_ANSWER_HERE"
},
{
"question": "EXAMPLE_QUESTION_HERE",
"answer": "EXAMPLE_ANSWER_HERE"
}
]
```
</details>
## Multilingual Support
SoT supports multiple languages. System prompts and exemplars are automatically loaded in the requested language.
## Paradigm Selection Model
SoT includes a pretrained DistilBERT model for automatic paradigm selection based on the question. The model is available on Hugging Face: [saytes/SoT_DistilBERT](https://huggingface.co/saytes/SoT_DistilBERT)
## Datasets
The SoT_DistilBERT model was evaluated on the following datasets:
| Dataset | HF ID | Subset | Split | Evaluation Type |
|---------|-------|--------|-------|----------------|
| GSM8K | [gsm8k](https://huggingface.co/datasets/gsm8k) | main | test | numerical |
| SVAMP | [ChilleD/SVAMP](https://huggingface.co/datasets/ChilleD/SVAMP) | - | test | numerical |
| AQUA-RAT | [aqua_rat](https://huggingface.co/datasets/aqua_rat) | - | test | multiple_choice |
| DROP | [drop](https://huggingface.co/datasets/drop) | - | validation | open |
| OpenbookQA | [openbookqa](https://huggingface.co/datasets/openbookqa) | - | test | multiple_choice |
| StrategyQA | [ChilleD/StrategyQA](https://huggingface.co/datasets/ChilleD/StrategyQA) | - | test | yesno |
| LogiQA | [lucasmccabe/logiqa](https://huggingface.co/datasets/lucasmccabe/logiqa) | default | test | multiple_choice |
| Reclor | [metaeval/reclor](https://huggingface.co/datasets/metaeval/reclor) | - | validation | multiple_choice |
| HotPotQA | [hotpot_qa](https://huggingface.co/datasets/hotpot_qa) | distractor | validation | open |
| MuSiQue-Ans | [dgslibisey/MuSiQue](https://huggingface.co/datasets/dgslibisey/MuSiQue) | - | validation | open |
| QASC | [allenai/qasc](https://huggingface.co/datasets/allenai/qasc) | - | validation | multiple_choice |
| Worldtree | [nguyen-brat/worldtree](https://huggingface.co/datasets/nguyen-brat/worldtree) | - | train | multiple_choice |
| PubMedQA | [qiaojin/PubMedQA](https://huggingface.co/datasets/qiaojin/PubMedQA) | pqa_labeled | train | yesno |
| MedQA | [bigbio/med_qa](https://huggingface.co/datasets/bigbio/med_qa) | med_qa_en_source | validation | multiple_choice |
## Limitations
- The model is trained to classify questions into one of three predefined paradigms and may not generalize to tasks outside the training distribution.
- Performance may vary depending on the complexity and domain of the question.
## Citation
If you find our work helpful, please cite:
```
@misc{aytes2025sot,
title={Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching},
author={Simon A. Aytes and Jinheon Baek and Sung Ju Hwang},
year={2025},
eprint={2503.05179},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://hf.co/papers/2503.05179},
}
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. |