Upload model
Browse files- config.json +2 -2
- enums.py +22 -0
- model.safetensors +3 -0
- rna_torsionbert_config.py +4 -3
- rna_torsionbert_model.py +3 -1
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"RNATorsionBERTModel"
|
4 |
],
|
@@ -9,7 +10,6 @@
|
|
9 |
"hidden_size": 1024,
|
10 |
"k": 3,
|
11 |
"model_type": "rna_torsionbert",
|
12 |
-
"num_classes": 18,
|
13 |
"torch_dtype": "float32",
|
14 |
-
"transformers_version": "4.
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"angles": "BACKBONE",
|
3 |
"architectures": [
|
4 |
"RNATorsionBERTModel"
|
5 |
],
|
|
|
10 |
"hidden_size": 1024,
|
11 |
"k": 3,
|
12 |
"model_type": "rna_torsionbert",
|
|
|
13 |
"torch_dtype": "float32",
|
14 |
+
"transformers_version": "4.40.1"
|
15 |
}
|
enums.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BACKBONE = [
|
2 |
+
"alpha",
|
3 |
+
"beta",
|
4 |
+
"gamma",
|
5 |
+
"delta",
|
6 |
+
"epsilon",
|
7 |
+
"zeta",
|
8 |
+
"chi",
|
9 |
+
"eta",
|
10 |
+
"theta",
|
11 |
+
"eta'",
|
12 |
+
"theta'",
|
13 |
+
"v0",
|
14 |
+
"v1",
|
15 |
+
"v2",
|
16 |
+
"v3",
|
17 |
+
"v4"
|
18 |
+
]
|
19 |
+
|
20 |
+
ANGLES_TO_LIST = {
|
21 |
+
"BACKBONE": BACKBONE
|
22 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36a48154892c8697ebb962ba1e31ecb4bedad20c0de4e0836661955b29f54309
|
3 |
+
size 347688872
|
rna_torsionbert_config.py
CHANGED
@@ -3,14 +3,15 @@ from transformers import PretrainedConfig
|
|
3 |
|
4 |
class RNATorsionBertConfig(PretrainedConfig):
|
5 |
model_type = "rna_torsionbert"
|
6 |
-
def __init__(self, k: int = 3,
|
7 |
"""
|
8 |
Initialise the model.
|
9 |
:param k: the k-mer size.
|
10 |
-
:param
|
|
|
11 |
:param hidden_size: size of the hidden layer after BERT hidden states.
|
12 |
"""
|
13 |
self.k = k
|
14 |
-
self.
|
15 |
self.hidden_size = hidden_size
|
16 |
super().__init__(**kwargs)
|
|
|
3 |
|
4 |
class RNATorsionBertConfig(PretrainedConfig):
|
5 |
model_type = "rna_torsionbert"
|
6 |
+
def __init__(self, k: int = 3, angles: str = "BACKBONE", hidden_size: int = 1024, **kwargs):
|
7 |
"""
|
8 |
Initialise the model.
|
9 |
:param k: the k-mer size.
|
10 |
+
:param angles: types of angles to use. "BACKBONE" for eight torsional angles +
|
11 |
+
two pseudo-torsional angles
|
12 |
:param hidden_size: size of the hidden layer after BERT hidden states.
|
13 |
"""
|
14 |
self.k = k
|
15 |
+
self.angles = angles
|
16 |
self.hidden_size = hidden_size
|
17 |
super().__init__(**kwargs)
|
rna_torsionbert_model.py
CHANGED
@@ -2,6 +2,7 @@ from torch import nn
|
|
2 |
from transformers import PreTrainedModel, AutoModel, AutoConfig
|
3 |
|
4 |
from .rna_torsionbert_config import RNATorsionBertConfig
|
|
|
5 |
|
6 |
|
7 |
class RNATorsionBERTModel(PreTrainedModel):
|
@@ -10,6 +11,7 @@ class RNATorsionBERTModel(PreTrainedModel):
|
|
10 |
def __init__(self, config):
|
11 |
super().__init__(config)
|
12 |
self.init_model(config.k)
|
|
|
13 |
self.dnabert = AutoModel.from_pretrained(
|
14 |
self.model_name, config=self.dnabert_config, trust_remote_code=True
|
15 |
)
|
@@ -17,7 +19,7 @@ class RNATorsionBERTModel(PreTrainedModel):
|
|
17 |
nn.LayerNorm(self.dnabert_config.hidden_size),
|
18 |
nn.Linear(self.dnabert_config.hidden_size, config.hidden_size),
|
19 |
nn.GELU(),
|
20 |
-
nn.Linear(config.hidden_size,
|
21 |
)
|
22 |
self.activation = nn.Tanh()
|
23 |
|
|
|
2 |
from transformers import PreTrainedModel, AutoModel, AutoConfig
|
3 |
|
4 |
from .rna_torsionbert_config import RNATorsionBertConfig
|
5 |
+
from .enums import ANGLES_TO_LIST
|
6 |
|
7 |
|
8 |
class RNATorsionBERTModel(PreTrainedModel):
|
|
|
11 |
def __init__(self, config):
|
12 |
super().__init__(config)
|
13 |
self.init_model(config.k)
|
14 |
+
self.num_labels = 2 * len(ANGLES_TO_LIST.get(config.angles, []))
|
15 |
self.dnabert = AutoModel.from_pretrained(
|
16 |
self.model_name, config=self.dnabert_config, trust_remote_code=True
|
17 |
)
|
|
|
19 |
nn.LayerNorm(self.dnabert_config.hidden_size),
|
20 |
nn.Linear(self.dnabert_config.hidden_size, config.hidden_size),
|
21 |
nn.GELU(),
|
22 |
+
nn.Linear(config.hidden_size, self.num_labels),
|
23 |
)
|
24 |
self.activation = nn.Tanh()
|
25 |
|