Sayak Paul's picture

Sayak Paul

sayakpaul

AI & ML interests

Diffusion models, representation learning

Recent Activity

Articles

Organizations

Hugging Face's profile picture Deprem Private's profile picture ๐ŸงจDiffusers's profile picture TensorFlow TPU's profile picture Hugging Face Internal Testing Organization's profile picture ControlNet 1.1 Preview's profile picture Keras's profile picture All Things ViTs's profile picture Carted's profile picture Amazon ML's profile picture Probing ViTs's profile picture Evaluation on the Hub's profile picture Instruction-tuned Diffusion Models's profile picture JAX โ™ฅ๏ธ Diffusers ๐Ÿงจ's profile picture (De)fusing's profile picture Huggingface Projects's profile picture Keras Dreambooth Event's profile picture Hugging Face OSS Metrics's profile picture Deploy HF TF ViTs's profile picture Parti Prompts Diffusers's profile picture Open Generative AI's profile picture UniDiffuser Testing's profile picture Kandinsky Community's profile picture Personal Coding Assistant's profile picture Diffusers Demo at ICCV 2023's profile picture diffusers-adapter's profile picture xin-ic sayak-hf's profile picture PixArt's profile picture huggingPartyParis's profile picture Latent Consistency's profile picture Spatial-T2I's profile picture ZeroGPU Explorers's profile picture SPRIGHT's profile picture PEFT's profile picture NYU VisionX's profile picture Data Is Better Together's profile picture Social Post Explorers's profile picture MaPO's profile picture diffusers-internal-dev's profile picture AuraFlow's profile picture Anonymous T2I Model's profile picture Optimum Internal Testing's profile picture ZP's profile picture Diffusion Guidance's profile picture syn-t2i's profile picture Vchitect-XL's profile picture Data Is Better Together Contributor's profile picture DDUF's profile picture HunyuanVideo Community's profile picture Video Intrinsics's profile picture Finetrainers's profile picture

sayakpaul's activity

posted an update about 14 hours ago
view post
Post
719
We have been cooking a couple of fine-tuning runs on CogVideoX with finetrainers, smol datasets, and LoRA to generate cool video effects like crushing, dissolving, etc.

We are also releasing a LoRA extraction utility from a fully fine-tuned checkpoint. I know that kind of stuff has existed since eternity, but the quality on video models was nothing short of spectacular. Below are some links:

* Models and datasets: https://huggingface.co/finetrainers
* finetrainers: https://github.com/a-r-r-o-w/finetrainers
* LoRA extraction: https://github.com/huggingface/diffusers/blob/main/scripts/extract_lora_from_model.py
posted an update 3 days ago
view post
Post
1784
We have authored a post to go over the state of video generation in the Diffusers ecosystem ๐Ÿงจ

We cover the models supported, the knobs of optims our users can fire, fine-tuning, and more ๐Ÿ”ฅ

5-6GBs for HunyuanVideo, sky is the limit ๐ŸŒŒ ๐Ÿค—
https://huggingface.co/blog/video_gen
posted an update about 1 month ago
view post
Post
4315
Commits speak louder than words ๐Ÿคช

* 4 new video models
* Multiple image models, including SANA & Flux Control
* New quantizers -> GGUF & TorchAO
* New training scripts

Enjoy this holiday-special Diffusers release ๐Ÿค—
Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
posted an update about 1 month ago
view post
Post
2140
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
ยท
posted an update about 2 months ago
view post
Post
2108
Introducing a high-quality open-preference dataset to further this line of research for image generation.

Despite being such an inseparable component for modern image generation, open preference datasets are a rarity!

So, we decided to work on one with the community!

Check it out here:
https://huggingface.co/blog/image-preferences
  • 7 replies
ยท
posted an update about 2 months ago
view post
Post
2145
The Control family of Flux from @black-forest-labs should be discussed more!

It enables structural controls like ControlNets while being significantly less expensive to run!

So, we're working on a Control LoRA training script ๐Ÿค—

It's still WIP, so go easy:
https://github.com/huggingface/diffusers/pull/10130
posted an update 2 months ago
posted an update 2 months ago
view post
Post
2662
It's been a while we shipped native quantization support in diffusers ๐Ÿงจ

We currently support bistandbytes as the official backend but using others like torchao is already very simple.

This post is just a reminder of what's possible:

1. Loading a model with a quantization config
2. Saving a model with quantization config
3. Loading a pre-quantized model
4. enable_model_cpu_offload()
5. Training and loading LoRAs into quantized checkpoints

Docs:
https://huggingface.co/docs/diffusers/main/en/quantization/bitsandbytes
  • 1 reply
ยท
posted an update 4 months ago
view post
Post
2767
Did some little experimentation to resize pre-trained LoRAs on Flux. I explored two themes:

* Decrease the rank of a LoRA
* Increase the rank of a LoRA

The first one is helpful in reducing memory requirements if the LoRA is of a high rank, while the second one is merely an experiment. Another implication of this study is in the unification of LoRA ranks when you would like to torch.compile() them.

Check it out here:
sayakpaul/flux-lora-resizing
  • 1 reply
ยท
reacted to dn6's post with โค๏ธ 5 months ago
view post
Post
2744
Sharing for anyone using Diffusers from_single_file loading and affected by the Runway SD 1.5 issue.

If you have runwayml/stable-diffusion-v1-5 saved locally in your HF cache then loading single file checkpoints in the following way should still work.

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_single_file("<url or path to single file checkpoint>")


If you do not have the model repo saved in your cache, then automatically inferring the pipeline config will not work since the reference repo runwayml/stable-diffusion-v1-5 doesn't exist anymore.

You can use an alternative SD1.5 repo id to still configure your pipeline.

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_single_file("<url or path to single file checkpoint>", config="Lykon/DreamShaper")


We're working on resolving the issue ASAP.
  • 2 replies
ยท
posted an update 6 months ago
posted an update 6 months ago
view post
Post
4497
Flux.1-Dev like images but in fewer steps.

Merging code (very simple), inference code, merged params: sayakpaul/FLUX.1-merged

Enjoy the Monday ๐Ÿค—
ยท
posted an update 6 months ago
view post
Post
3803
With larger and larger diffusion transformers coming up, it's becoming increasingly important to have some good quantization tools for them.

We present our findings from a series of experiments on quantizing different diffusion pipelines based on diffusion transformers.

We demonstrate excellent memory savings with a bit of sacrifice on inference latency which is expected to improve in the coming days.

Diffusers ๐Ÿค Quanto โค๏ธ

This was a juicy collaboration between @dacorvo and myself.

Check out the post to learn all about it
https://huggingface.co/blog/quanto-diffusers
ยท
reacted to alex-abb's post with ๐Ÿ”ฅ 7 months ago
view post
Post
4829
Hi everyone!
I'm Alex, I'm 16, I've been an internship at Hugging Face for a little over a week and I've already learned a lot about using and prompting LLM models. With @victor as tutor I've just finished a space that analyzes your feelings by prompting an LLM chat model. The aim is to extend it so that it can categorize hugging face posts.

alex-abb/LLM_Feeling_Analyzer
ยท
posted an update 7 months ago
posted an update 7 months ago
view post
Post
3142
What is your favorite part of our Diffusers integration of Stable Diffusion 3?

My personal favorite is the ability to run it on a variety of different GPUs with minimal code changes.

Learn more about them here:
https://huggingface.co/blog/sd3
replied to lunarflu's post 8 months ago
posted an update 8 months ago
view post
Post
1880
๐Ÿงจ Diffusers 0.28.0 is out ๐Ÿ”ฅ

It features the first non-generative pipeline of the library -- Marigold ๐Ÿฅ

Marigold shines at performing Depth Estimation and Surface Normal Estimation. It was contributed by @toshas , one of the authors of Marigold.

This release also features a massive refactor (led by @DN6 ) of the from_single_file() method, highlighting our efforts for making our library more amenable to community features ๐Ÿค—

Check out the release notes here:
https://github.com/huggingface/diffusers/releases/tag/v0.28.0
reacted to lunarflu's post with โค๏ธ 8 months ago
view post
Post
1961
cooking up something....anyone interested in a daily activity tracker for HF?
ยท
posted an update 9 months ago
view post
Post
2029
Custom pipelines and components in Diffusers ๐ŸŽธ

Wanted to use customized pipelines and other components (schedulers, unets, text encoders, etc.) in Diffusers?

Found it inflexible?

Since the first dawn on earth, we have supported loading custom pipelines via a custom_pipeline argument ๐ŸŒ„

These pipelines are inference-only, i.e., the assumption is that we're leveraging an existing checkpoint (e.g., runwayml/stable-diffusion-v1-5) and ONLY modifying the pipeline implementation.

We have many cool pipelines, implemented that way. They all share the same benefits available to a DiffusionPipeline, no compromise there ๐Ÿค—

Check them here:
https://github.com/huggingface/diffusers/tree/main/examples/community

Then we might have a requirement of everything customized i.e., custom components along with a custom pipeline. Sure, that's all possible.

All you have to do is keep the implementations of those custom components on the Hub repository you're loading your pipeline checkpoint from.

SDXL Japanese was implemented like this ๐Ÿ”ฅ
stabilityai/japanese-stable-diffusion-xl

Full guide is available here โฌ‡๏ธ
https://huggingface.co/docs/diffusers/main/en/using-diffusers/custom_pipeline_overview

And, of course, these share all the benefits that come with DiffusionPipeline.