Update application.py
Browse files- application.py +40 -36
application.py
CHANGED
@@ -2,22 +2,25 @@ import streamlit as st
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from transformers import DistilBertTokenizer, DistilBertForMaskedLM
|
5 |
-
|
6 |
from qa_model import ReuseQuestionDistilBERT
|
7 |
|
8 |
-
@st.
|
9 |
def load_model():
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
def get_answer(question, text, tokenizer, model):
|
|
|
|
|
|
|
21 |
question = [question.strip()]
|
22 |
text = [text.strip()]
|
23 |
|
@@ -27,44 +30,45 @@ def get_answer(question, text, tokenizer, model):
|
|
27 |
max_length=512,
|
28 |
truncation="only_second",
|
29 |
padding="max_length",
|
|
|
30 |
)
|
31 |
-
input_ids = torch.tensor(inputs['input_ids'])
|
32 |
-
outputs = model(input_ids, attention_mask=torch.tensor(inputs['attention_mask']), start_positions=None, end_positions=None)
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
38 |
|
|
|
|
|
|
|
|
|
39 |
answer_tokens = tokenizer.convert_ids_to_tokens(ans_tokens, skip_special_tokens=True)
|
40 |
predicted = tokenizer.convert_tokens_to_string(answer_tokens)
|
41 |
-
return predicted
|
42 |
-
|
43 |
|
44 |
def main():
|
45 |
st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
|
46 |
-
|
47 |
-
|
48 |
-
"This tool will help you find answers to your questions about the text you provide. \n"
|
49 |
-
"Please enter your question and the text you want to search in the boxes below.")
|
50 |
model, tokenizer = load_model()
|
51 |
-
|
52 |
with st.form("qa_form"):
|
53 |
-
|
54 |
-
text = st.text_area("Enter your text here", on_change=None)
|
55 |
-
|
56 |
-
# define a streamlit input
|
57 |
question = st.text_input("Enter your question here")
|
58 |
|
59 |
if st.form_submit_button("Submit"):
|
60 |
-
|
61 |
-
|
62 |
-
answer = get_answer(question, text, tokenizer, model)
|
63 |
-
# display the answer
|
64 |
-
if answer == "":
|
65 |
-
data_load_state.text("Sorry but I don't know the answer to that question")
|
66 |
else:
|
67 |
-
|
68 |
-
|
|
|
69 |
|
70 |
-
|
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from transformers import DistilBertTokenizer, DistilBertForMaskedLM
|
|
|
5 |
from qa_model import ReuseQuestionDistilBERT
|
6 |
|
7 |
+
@st.cache_resource
|
8 |
def load_model():
|
9 |
+
try:
|
10 |
+
mod = DistilBertForMaskedLM.from_pretrained("distilbert-base-uncased").distilbert
|
11 |
+
m = ReuseQuestionDistilBERT(mod)
|
12 |
+
m.load_state_dict(torch.load("distilbert_reuse.model", map_location=torch.device('cpu')))
|
13 |
+
model = m
|
14 |
+
tokenizer = DistilBertTokenizer.from_pretrained('qa_tokenizer')
|
15 |
+
return model, tokenizer
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error loading model: {e}")
|
18 |
+
return None, None
|
19 |
|
20 |
def get_answer(question, text, tokenizer, model):
|
21 |
+
if model is None or tokenizer is None:
|
22 |
+
return "Model not loaded properly."
|
23 |
+
|
24 |
question = [question.strip()]
|
25 |
text = [text.strip()]
|
26 |
|
|
|
30 |
max_length=512,
|
31 |
truncation="only_second",
|
32 |
padding="max_length",
|
33 |
+
return_tensors="pt"
|
34 |
)
|
|
|
|
|
35 |
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(
|
38 |
+
inputs["input_ids"],
|
39 |
+
attention_mask=inputs["attention_mask"],
|
40 |
+
start_positions=None,
|
41 |
+
end_positions=None
|
42 |
+
)
|
43 |
|
44 |
+
if "start_logits" not in outputs or "end_logits" not in outputs:
|
45 |
+
return "Error: Model output structure is incorrect."
|
46 |
|
47 |
+
start = torch.argmax(outputs["start_logits"], dim=1)
|
48 |
+
end = torch.argmax(outputs["end_logits"], dim=1)
|
49 |
+
|
50 |
+
ans_tokens = inputs["input_ids"][0, start:end + 1]
|
51 |
answer_tokens = tokenizer.convert_ids_to_tokens(ans_tokens, skip_special_tokens=True)
|
52 |
predicted = tokenizer.convert_tokens_to_string(answer_tokens)
|
53 |
+
return predicted or "No answer found."
|
|
|
54 |
|
55 |
def main():
|
56 |
st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:")
|
57 |
+
st.write("# Question Answering Tool")
|
58 |
+
|
|
|
|
|
59 |
model, tokenizer = load_model()
|
60 |
+
|
61 |
with st.form("qa_form"):
|
62 |
+
text = st.text_area("Enter your text here")
|
|
|
|
|
|
|
63 |
question = st.text_input("Enter your question here")
|
64 |
|
65 |
if st.form_submit_button("Submit"):
|
66 |
+
if not text or not question:
|
67 |
+
st.warning("Please enter both text and a question.")
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
+
st.text("Processing...")
|
70 |
+
answer = get_answer(question, text, tokenizer, model)
|
71 |
+
st.text(f"Answer: {answer}")
|
72 |
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main()
|