Question Answering
File size: 20,589 Bytes
4743e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
from torch import nn
import torch
from typing import Optional
import copy
import pandas as pd

"""
This module contains the implementation of the QA model. We define three different models and a dataset class.
The structure is based on the Hugging Face implementations.
https://huggingface.co/docs/transformers/model_doc/distilbert
"""

class SimpleQuestionDistilBERT(nn.Module):
    """
    This class implements a simple version of the distilbert question answering model, following the implementation of Hugging Face, 
    https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/distilbert/modeling_distilbert.py#L805

    It basically fine-tunes a given distilbert model. We only add one linear layer on top, which determines the start and end logits.
    """
    def __init__(self, distilbert, dropout=0.1):
        """
        Creates and initialises model
        """
        super(SimpleQuestionDistilBERT, self).__init__()

        self.distilbert = distilbert

        self.dropout = nn.Dropout(dropout)

        self.classifier = nn.Linear(768, 2)

        # initialise weights
        def init_weights(m):
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                m.bias.data.fill_(0.01)
        self.classifier.apply(init_weights)


    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                head_mask: Optional[torch.Tensor] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                start_positions: Optional[torch.Tensor] = None,
                end_positions: Optional[torch.Tensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None):
        """
        This function implements the forward pass of the model. It takes the input_ids and attention_mask and returns the start and end logits.
        """
        # make predictions on base model
        distilbert_output = self.distilbert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # retrieve hidden states
        hidden_states = distilbert_output[0]  # (bs, max_query_len, dim)
        hidden_states = self.dropout(hidden_states)

        # make predictions on head
        logits = self.classifier(hidden_states)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()  # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1).contiguous()  # (bs, max_query_len)

        # calculate loss
        total_loss = None
        if start_positions is not None and end_positions is not None:
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)

            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        return {"loss": total_loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
                "hidden_states": distilbert_output.hidden_states,
                "attentions": distilbert_output.attentions}


class QuestionDistilBERT(nn.Module):
    """
    This class implements the distilbert question answering model. We fix all layers of the base model and only fine-tune the head.
    The head consists of a transformer encoder with three layers and a classifier on top.
    """
    def __init__(self, distilbert, dropout=0.1):
        """
        Creates and initialises QuestionDIstilBERT instance
        """
        super(QuestionDistilBERT, self).__init__()

        # fix parameters for base model
        for param in distilbert.parameters():
            param.requires_grad = False

        self.distilbert = distilbert
        self.relu = nn.ReLU()

        self.dropout = nn.Dropout(dropout)
        self.te = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=768, nhead=12), num_layers=3)

        # create custom head
        self.classifier = nn.Sequential(
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(768, 512),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(512, 256),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(256, 128),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.Dropout(dropout),
            nn.ReLU(),
            nn.Linear(64, 2)
        )

        # initialise weights of the linear layers
        def init_weights(m):
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                m.bias.data.fill_(0.01)

        self.classifier.apply(init_weights)

    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                head_mask: Optional[torch.Tensor] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                start_positions: Optional[torch.Tensor] = None,
                end_positions: Optional[torch.Tensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None):
        """
        This function implements the forward pass of the model. It takes the input_ids and attention_mask and returns the start and end logits.
        """
        # make predictions on base model
        distilbert_output = self.distilbert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # retrieve hidden states
        hidden_states = distilbert_output[0]  # (bs, max_query_len, dim)
        hidden_states = self.dropout(hidden_states)
        attn_output = self.te(hidden_states)

        # make predictions on head
        logits = self.classifier(attn_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous() 
        end_logits = end_logits.squeeze(-1).contiguous()

        # calculate loss
        total_loss = None
        if start_positions is not None and end_positions is not None:
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)

            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        return {"loss": total_loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
                "hidden_states": distilbert_output.hidden_states,
                "attentions": distilbert_output.attentions}


class ReuseQuestionDistilBERT(nn.Module):
    """
    This class imports a model where all layers of the base distilbert model are fixed.
    Instead of training a completely new head, we copy the last two layers of the base model and add a classifier on top.
    """
    def __init__(self, distilbert, dropout=0.15):
        """
        Creates and initialises QuestionDIstilBERT instance
        """
        super(ReuseQuestionDistilBERT, self).__init__()
        self.te = copy.deepcopy(list(list(distilbert.children())[1].children())[0][-2:])
        # fix parameters for base model
        for param in distilbert.parameters():
            param.requires_grad = False

        self.distilbert = distilbert
        self.relu = nn.ReLU()

        self.dropout = nn.Dropout(dropout)

        # create custom head
        self.classifier = nn.Linear(768, 2)

        def init_weights(m):
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                m.bias.data.fill_(0.01)
        self.classifier.apply(init_weights)

    def forward(self,
                input_ids: Optional[torch.Tensor] = None,
                attention_mask: Optional[torch.Tensor] = None,
                head_mask: Optional[torch.Tensor] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                start_positions: Optional[torch.Tensor] = None,
                end_positions: Optional[torch.Tensor] = None,
                output_attentions: Optional[bool] = None,
                output_hidden_states: Optional[bool] = None,
                return_dict: Optional[bool] = None):
        """
        This function implements the forward pass of the model. It takes the input_ids and attention_mask and returns the start and end logits.
        """
        # make predictions on base model
        distilbert_output = self.distilbert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # retrieve hidden states
        hidden_states = distilbert_output[0]  # (bs, max_query_len, dim)
        hidden_states = self.dropout(hidden_states)
        for te in self.te:
            hidden_states = te(
                x=hidden_states,
                attn_mask=attention_mask,
                head_mask=head_mask,
                output_attentions=output_attentions
            )[0]
        hidden_states = self.dropout(hidden_states)

        # make predictions on head
        logits = self.classifier(hidden_states)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()  # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1).contiguous()  # (bs, max_query_len)

        # calculate loss
        total_loss = None
        if start_positions is not None and end_positions is not None:
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)

            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        return {"loss": total_loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
                "hidden_states": distilbert_output.hidden_states,
                "attentions": distilbert_output.attentions}

class Dataset(torch.utils.data.Dataset):
    """
    This class creates a dataset for the DistilBERT qa-model.
    """
    def __init__(self, squad_paths, natural_question_paths, hotpotqa_paths, tokenizer):
        """
        creates and initialises dataset object
        """
        self.paths = []
        self.count = 0
        if squad_paths != None:
            self.paths.extend(squad_paths[:len(squad_paths)-1])
        if natural_question_paths != None:
            self.paths.extend(natural_question_paths[:len(natural_question_paths)-1])
        if hotpotqa_paths != None:
            self.paths.extend(hotpotqa_paths[:len(hotpotqa_paths)-1])
        self.data = None
        self.current_file = 0
        self.remaining = 0
        self.encodings = None
        # tokenizer for strings
        self.tokenizer = tokenizer
        
        
    def __len__(self):
        """
        returns the length of the dataset
        """
        return len(self.paths)*1000
    
    def read_file(self, path):
        """
        reads the file stored at path
        """
        with open(path, 'r', encoding='utf-8') as f:
            lines = f.read().split('\n')
        return lines

    def get_encodings(self):
        """
        returns encoded strings for the model
        """
        # remove leading and ending whitespaces
        questions = [q.strip() for q in self.data["question"]]
        context = [q.lower() for q in self.data["context"]]
    
        # tokenises questions and context. If the context is too long, we truncate it.
        inputs = self.tokenizer(
            questions,
            context,
            max_length=512,
            truncation="only_second",
            return_offsets_mapping=True,
            padding="max_length",
        )

        # tuples of integers giving us the original positions
        offset_mapping = inputs.pop("offset_mapping")
        
        answers = self.data["answer"]
        answer_start = self.data["answer_start"]

        # store beginning and end positions
        start_positions = []
        end_positions = []

        # iterate through questions
        for i, offset in enumerate(offset_mapping):

            answer = answers[i]
            start_char = int(answer_start[i])
            end_char = start_char + len(answer)

            sequence_ids = inputs.sequence_ids(i)

            # start and end of context based on tokens
            idx = 0
            while sequence_ids[idx] != 1:
                idx += 1

            context_start = idx
            while sequence_ids[idx] == 1:
                idx += 1
            context_end = idx - 1
            
            # If answer not inside context add (0,0)
            if offset[context_start][0] > end_char or offset[context_end][1] < start_char:
                start_positions.append(0)
                end_positions.append(0)
                self.count += 1
            else:
                # go to first offset position that is smaller than start char
                idx = context_start
                while idx <= context_end and offset[idx][0] <= start_char:
                    idx += 1

                start_positions.append(idx - 1)
                idx = context_end
                while idx >= context_start and offset[idx][1] >= end_char:
                    idx -= 1
                end_positions.append(idx + 1)

        # append start and end position to the embeddings
        inputs["start_positions"] = start_positions
        inputs["end_positions"] = end_positions
        # return input_ids, attention mask, start and end positions (GT)
        return {'input_ids': torch.tensor(inputs['input_ids']), 
                'attention_mask': torch.tensor(inputs['attention_mask']),
                'start_positions': torch.tensor(inputs['start_positions']), 
                'end_positions': torch.tensor(inputs['end_positions'])}

    def __getitem__(self, i):
        """
        returns encoding of item i
        """
        
        # if we have looked at all items in the file - take next
        if self.remaining == 0:
            self.data = self.read_file(self.paths[self.current_file])
            self.data = pd.DataFrame([line.split("\t") for line in self.data], 
                                 columns=["context", "question", "answer", "answer_start"])
            self.current_file += 1
            self.remaining = len(self.data)
            self.encodings = self.get_encodings()
        # if we are at the end of the dataset, start over again
        if self.current_file == len(self.paths):
            self.current_file = 0
        self.remaining -= 1
        return {key: tensor[i%1000] for key, tensor in self.encodings.items()}

def test_model(model, optim, test_ds_loader, device):
    """
    This function is used to test the model's functionality, namely if params are not NaN and infinite,
    not-frozen parameters have to change, frozen ones must not
    :param model: pytorch model to evaluate
    :param optim: optimizer
    :param test_ds_loader: dataloader object
    :param device: device, the model is on
    :raises Exception if the model doesn't work as expected
    """
    ## Check if non-frozen parameters changed and frozen ones did not

    # get parameters used for tuning and store initial weight
    params = [np for np in model.named_parameters() if np[1].requires_grad]
    initial_params = [(name, p.clone()) for (name, p) in params]

    # get frozen parameters and store initial weight
    params_frozen = [np for np in model.named_parameters() if not np[1].requires_grad]
    initial_params_frozen = [(name, p.clone()) for (name, p) in params_frozen]

    # perform one iteration
    optim.zero_grad()
    batch = next(iter(test_ds_loader))

    input_ids = batch['input_ids'].to(device)
    attention_mask = batch['attention_mask'].to(device)
    start_positions = batch['start_positions'].to(device)
    end_positions = batch['end_positions'].to(device)

    # forward pass and backpropagation
    outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions,
                    end_positions=end_positions)
    loss = outputs['loss']
    loss.backward()
    optim.step()

    # check if variables have changed
    for (_, p0), (name, p1) in zip(initial_params, params):
        # check different than initial
        try:
            assert not torch.equal(p0.to(device), p1.to(device))
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='did not change!'
                )
            )
        # check not NaN
        try:
            assert not torch.isnan(p1).byte().any()
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='is NaN!'
                )
            )
        # check finite
        try:
            assert torch.isfinite(p1).byte().all()
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='is Inf!'
                )
            )

    # check that frozen weights have not changed
    for (_, p0), (name, p1) in zip(initial_params_frozen, params_frozen):
        # should be the same
        try:
            assert torch.equal(p0.to(device), p1.to(device))
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='changed!'
                )
            )
        # check not NaN
        try:
            assert not torch.isnan(p1).byte().any()
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='is NaN!'
                )
            )

        # check finite numbers
        try:
            assert torch.isfinite(p1).byte().all()
        except AssertionError:
            raise Exception(
                "{var_name} {msg}".format(
                    var_name=name,
                    msg='is Inf!'
                )
            )
    print("Passed")